Suoyi Han

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2865324/publications.pdf

Version: 2024-02-01

		933447	839539	
18	517	10	18	
papers	citations	h-index	g-index	
23	23	23	512	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Salinity Inhibits Rice Seed Germination by Reducing \hat{l} ±-Amylase Activity via Decreased Bioactive Gibberellin Content. Frontiers in Plant Science, 2018, 9, 275.	3.6	102
2	Mutagenesis of FAD2 genes in peanut with CRISPR/Cas9 based gene editing. BMC Biotechnology, 2019, 19, 24.	3.3	83
3	A SNP-Based Linkage Map Revealed QTLs for Resistance to Early and Late Leaf Spot Diseases in Peanut (Arachis hypogaea L.). Frontiers in Plant Science, 2018, 9, 1012.	3.6	63
4	Identification of lipoxygenase (LOX) genes from legumes and their responses in wild type and cultivated peanut upon Aspergillus flavus infection. Scientific Reports, 2016, 6, 35245.	3.3	52
5	Comparative analysis of NBS-LRR genes and their response to Aspergillus flavus in Arachis. PLoS ONE, 2017, 12, e0171181.	2.5	50
6	Genetic Diversity, Population Structure, and Botanical Variety of 320 Global Peanut Accessions Revealed Through Tunable Genotyping-by-Sequencing. Scientific Reports, 2018, 8, 14500.	3.3	33
7	Physiological and Proteomics Analyses Reveal Low-Phosphorus Stress Affected the Regulation of Photosynthesis in Soybean. International Journal of Molecular Sciences, 2018, 19, 1688.	4.1	32
8	Genome-Wide Identification and Expression Analysis of AP2/ERF Transcription Factor Related to Drought Stress in Cultivated Peanut (Arachis hypogaea L.). Frontiers in Genetics, 2021, 12, 750761.	2.3	21
9	Transcriptomic analyses reveal the expression and regulation of genes associated with resistance to early leaf spot in peanut. BMC Research Notes, 2020, 13, 381.	1.4	15
10	Differential gene expression in leaf tissues between mutant and wild-type genotypes response to late leaf spot in peanut (Arachis hypogaea L.). PLoS ONE, 2017, 12, e0183428.	2.5	14
11	High-resolution chromosome painting with repetitive and single-copy oligonucleotides in Arachis species identifies structural rearrangements and genome differentiation. BMC Plant Biology, 2018, 18, 240.	3.6	10
12	QTL mapping of web blotch resistance in peanut by high-throughput genome-wide sequencing. BMC Plant Biology, 2020, 20, 249.	3.6	9
13	Transcriptome analysis of pod mutant reveals plant hormones are important regulators in controlling pod size in peanut (<i>Arachis hypogaea</i> L.). PeerJ, 2022, 10, e12965.	2.0	8
14	Development of an oligonucleotide dye solution facilitates high throughput and cost-efficient chromosome identification in peanut. Plant Methods, 2019, 15, 69.	4.3	7
15	Physical mapping of repetitive oligonucleotides facilitates the establishment of a genome map-based karyotype to identify chromosomal variations in peanut. BMC Plant Biology, 2021, 21, 107.	3.6	6
16	<scp><i>AhNPR3</i></scp> regulates the expression of <scp>WRKY</scp> and <scp><i>PR</i></scp> genes, and mediates the immune response of the peanut (<i>Arachis hypogaea</i> 2022, 110, 735-747.	5.7	6
17	Genomeâ€wide identification of mlo genes in the cultivated peanut (Arachis hypogaea L.). Euphytica, 2021, 217, 1.	1.2	4
18	Smash-ridging cultivation improves crop production. Outlook on Agriculture, 2022, 51, 173-177.	3.4	2