Dominik WÃ¹/₄st

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2865022/publications.pdf

Version: 2024-02-01

567281 752698 20 774 15 20 citations h-index g-index papers 21 21 21 1076 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Process Water Recirculation During Hydrothermal Carbonization as a Promising Process Step Towards the Production of Nitrogen-Doped Carbonaceous Materials. Waste and Biomass Valorization, 2022, 13, 2349-2373.	3.4	6
2	Challenges of Green Production of 2,5â€Furandicarboxylic Acid from Bioâ€Derived 5â€Hydroxymethylfurfural: Overcoming Deactivation by Concomitant Amino Acids. ChemSusChem, 2022, 15, .	6.8	8
3	Anaerobic Degradation of Individual Components from 5-Hydroxymethylfurfural Process-Wastewater in Continuously Operated Fixed Bed Reactors. Processes, 2021, 9, 677.	2.8	4
4	Effect of residence time during hydrothermal carbonization of biogas digestate on the combustion characteristics of hydrochar and the biogas production of process water. Bioresource Technology, 2021, 333, 125110.	9.6	30
5	Understanding the influence of biomass particle size and reaction medium on the formation pathways of hydrochar. Biomass Conversion and Biorefinery, 2020, 10, 1357-1380.	4.6	38
6	Fate of Nitrogen, Phosphate, and Potassium during Hydrothermal Carbonization and the Potential for Nutrient Recovery. ACS Sustainable Chemistry and Engineering, 2020, 8, 15507-15516.	6.7	30
7	Toward an Intensified Process of Biomass-Derived Monomers: The Influence of 5-(Hydroxymethyl)furfural Byproducts on the Gold-Catalyzed Synthesis of 2,5-Furandicarboxylic Acid. ACS Sustainable Chemistry and Engineering, 2020, 8, 11512-11521.	6.7	25
8	Valorization of maize silage digestate from two-stage anaerobic digestion by hydrothermal carbonization. Energy Conversion and Management, 2020, 222, 113218.	9.2	39
9	Nitrogenâ€Containing Hydrochar: The Influence of Nitrogenâ€Containing Compounds on the Hydrochar Formation. ChemistryOpen, 2020, 9, 864-873.	1.9	15
10	Hydrothermal carbonization coupled with anaerobic digestion for the valorization of the organic fraction of municipal solid waste. Bioresource Technology, 2020, 314, 123734.	9.6	65
11	Steam Explosion Conditions Highly Influence the Biogas Yield of Rice Straw. Molecules, 2019, 24, 3492.	3.8	28
12	Hydrothermal carbonization of dry toilet residues as an added-value strategy – Investigation of process parameters. Journal of Environmental Management, 2019, 234, 537-545.	7.8	23
13	One stage olive mill waste streams valorisation via hydrothermal carbonisation. Waste Management, 2018, 80, 224-234.	7.4	87
14	Fate of Nitrogen during Hydrothermal Carbonization. Energy & Energy & 2016, 30, 8037-8042.	5.1	101
15	Short-term response of soil microorganisms to biochar addition in a temperate agroecosystem under soil warming. Agriculture, Ecosystems and Environment, 2016, 233, 308-317.	5.3	60
16	Hydrothermal carbonization of wheat strawâ€"prediction of product mass yields and degree of carbonization by severity parameter. Biomass Conversion and Biorefinery, 2016, 6, 347-354.	4.6	18
17	Prediction of gaseous, liquid and solid mass yields from hydrothermal carbonization of biogas digestate by severity parameter. Biomass Conversion and Biorefinery, 2016, 6, 151-160.	4.6	20
18	Inherent organic compounds in biochar–Their content, composition and potential toxic effects. Journal of Environmental Management, 2015, 156, 150-157.	7.8	129

#	Article	IF	CITATIONS
19	An approach to unify the appraisal framework for biomass conversion systems. Biomass and Bioenergy, 2015, 83, 354-365.	5.7	14
20	Hydrothermal Carbonization: 2. Kinetics of Draff Conversion. Chemie-Ingenieur-Technik, 2012, 84, 509-512.	0.8	34