Paul A Dalby

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2864692/publications.pdf

Version: 2024-02-01

96 papers 3,133 citations

32 h-index 51 g-index

105 all docs 105 docs citations

105 times ranked 2945 citing authors

#	Article	IF	Citations
1	Hot spots-making directed evolution easier. Biotechnology Advances, 2022, 56, 107926.	6.0	35
2	Protein Engineering and HDX Identify Structural Regions of G-CSF Critical to Its Stability and Aggregation. Molecular Pharmaceutics, 2022, 19, 616-629.	2.3	4
3	Fineâ€tuning the activity and stability of an evolved enzyme activeâ€site through noncanonical aminoâ€acids. FEBS Journal, 2021, 288, 1935-1955.	2.2	7
4	Comparison of the pH- and thermally-induced fluctuations of a therapeutic antibody Fab fragment by molecular dynamics simulation. Computational and Structural Biotechnology Journal, 2021, 19, 2726-2741.	1.9	7
5	Machine learning reveals hidden stability code in protein native fluorescence. Computational and Structural Biotechnology Journal, 2021, 19, 2750-2760.	1.9	4
6	Proof-of-concept analytical instrument for label-free optical deconvolution of protein species in a mixture. Journal of Chromatography A, 2021, 1641, 461968.	1.8	2
7	Solution structure of deglycosylated human IgG1 shows the role of CH2 glycans in its conformation. Biophysical Journal, 2021, 120, 1814-1834.	0.2	3
8	Reference Protocol to Assess Analytical Performance of Higher Order Structural Analysis Measurements: Results from an Interlaboratory Comparison. Analytical Chemistry, 2021, 93, 9041-9048.	3.2	4
9	Engineering improved ethylene production: Leveraging systems biology and adaptive laboratory evolution. Metabolic Engineering, 2021, 67, 308-320.	3.6	8
10	Biophysical characterization of the inactivation of E. coli transketolase by aqueous co-solvents. Scientific Reports, $2021,11,23584.$	1.6	1
11	Engineering transketolase to accept both unnatural donor and acceptor substrates and produce αâ€hydroxyketones. FEBS Journal, 2020, 287, 1758-1776.	2.2	16
12	Advancements in the co-formulation of biologic therapeutics. Journal of Controlled Release, 2020, 327, 397-405.	4.8	21
13	HDX and In Silico Docking Reveal that Excipients Stabilize G-CSF via a Combination of Preferential Exclusion and Specific Hotspot Interactions. Molecular Pharmaceutics, 2020, 17, 4637-4651.	2.3	7
14	Stability enhancement in a mAb and Fab coformulation. Scientific Reports, 2020, 10, 21129.	1.6	7
15	A beginner's guide to molecular dynamics simulations and the identification of cross-correlation networks for enzyme engineering. Methods in Enzymology, 2020, 643, 15-49.	0.4	19
16	The Two-Species Model of transketolase explains donor substrate-binding, inhibition and heat-activation. Scientific Reports, 2020, 10, 4148.	1.6	7
17	Functional and computational identification of a rescue mutation near the active site of an mRNA methyltransferase. Scientific Reports, 2020, 10, 21841.	1.6	1
18	Virus lasers for biological detection. Nature Communications, 2019, 10, 3594.	5.8	27

#	Article	IF	Citations
19	Novel insights into transketolase activation by cofactor binding identifies two native species subpopulations. Scientific Reports, 2019, 9, 16116.	1.6	9
20	An Expanded Conformation of an Antibody Fab Region by X-Ray Scattering, Molecular Dynamics, and smFRET Identifies an Aggregation Mechanism. Journal of Molecular Biology, 2019, 431, 1409-1425.	2.0	19
21	Selective Stabilization and Destabilization of Protein Domains in Tissue-Type Plasminogen Activator Using Formulation Excipients. Molecular Pharmaceutics, 2019, 16, 744-755.	2.3	6
22	<i>T</i> _m -Values and Unfolded Fraction Can Predict Aggregation Rates for Granulocyte Colony Stimulating Factor Variant Formulations but Not under Predominantly Native Conditions. Molecular Pharmaceutics, 2018, 15, 256-267.	2.3	27
23	Coupled molecular dynamics mediate long- and short-range epistasis between mutations that affect stability and aggregation kinetics. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11043-E11052.	3.3	59
24	Exploiting correlated molecular-dynamics networks to counteract enzyme activity–stability trade-off. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E12192-E12200.	3.3	65
25	An Evaluation of the Potential of NMR Spectroscopy and Computational Modelling Methods to Inform Biopharmaceutical Formulations. Pharmaceutics, 2018, 10, 165.	2.0	22
26	Computational Design To Reduce Conformational Flexibility and Aggregation Rates of an Antibody Fab Fragment. Molecular Pharmaceutics, 2018, 15, 3079-3092.	2.3	25
27	Two strategies to engineer flexible loops for improved enzyme thermostability. Scientific Reports, 2017, 7, 41212.	1.6	121
28	An integrated biorefinery concept for conversion of sugar beet pulp into value-added chemicals and pharmaceutical intermediates. Faraday Discussions, 2017, 202, 415-431.	1.6	41
29	Identification of Protein–Excipient Interaction Hotspots Using Computational Approaches. International Journal of Molecular Sciences, 2016, 17, 853.	1.8	18
30	Impact of cofactor-binding loop mutations on thermotolerance and activity of E. coli transketolase. Enzyme and Microbial Technology, 2016, 89, 85-91.	1.6	18
31	Structural Analysis of an Evolved Transketolase Reveals Divergent Binding Modes. Scientific Reports, 2016, 6, 35716.	1.6	16
32	Transketolase catalysed upgrading of <scp> </scp> -arabinose: the one-step stereoselective synthesis of <scp> </scp> -gluco-heptulose. Green Chemistry, 2016, 18, 3158-3165.	4.6	35
33	Mapping the Aggregation Kinetics of a Therapeutic Antibody Fragment. Molecular Pharmaceutics, 2016, 13, 307-319.	2.3	51
34	Second generation engineering of transketolase for polar aromatic aldehyde substrates. Enzyme and Microbial Technology, 2015, 71, 45-52.	1.6	28
35	The Solution Structures of Two Human IgG1 Antibodies Show Conformational Stability and Accommodate Their C1q and Fcl³R Ligands. Journal of Biological Chemistry, 2015, 290, 8420-8438.	1.6	37
36	Single activeâ€site mutants are sufficient to enhance serine:pyruvate αâ€ŧransaminase activity in an ï‰â€ŧransaminase. FEBS Journal, 2015, 282, 2512-2526.	2.2	23

#	Article	IF	Citations
37	Modelling and optimisation of the one-pot, multi-enzymatic synthesis of chiral amino-alcohols based on microscale kinetic parameter determination. Chemical Engineering Science, 2015, 122, 360-372.	1.9	37
38	Evaluation of CV2025 I‰-transaminase for the bioconversion of lignin breakdown products into value-added chemicals: synthesis of vanillylamine from vanillin. Biocatalysis and Biotransformation, 2014, 32, 302-313.	1.1	16
39	The Fab Conformations in the Solution Structure of Human Immunoglobulin G4 (IgG4) Restrict Access to Its Fc Region. Journal of Biological Chemistry, 2014, 289, 20740-20756.	1.6	34
40	Identification and use of an alkane transporter plug-in for applications in biocatalysis and whole-cell biosensing of alkanes. Scientific Reports, 2014, 4, 5844.	1.6	54
41	The Solution Structure of Rabbit IgG Accounts for Its Interactions with the Fc Receptor and Complement C1q and Its Conformational Stability. Journal of Molecular Biology, 2013, 425, 506-523.	2.0	28
42	Optically Induced Thermal Gradients for Protein Characterization in Nanolitre-scale Samples in Microfluidic Devices. Scientific Reports, 2013, 3, 2130.	1.6	10
43	Rational substrate and enzyme engineering of transketolase for aromatics. Organic and Biomolecular Chemistry, 2012, 10, 9021.	1.5	35
44	An MILP formulation for the synthesis of protein purification processes. Chemical Engineering Research and Design, 2012, 90, 1262-1270.	2.7	10
45	Directed evolution to re-adapt a co-evolved network within an enzyme. Journal of Biotechnology, 2012, 157, 237-245.	1.9	27
46	A novel efficient optimisation system for purification process synthesis. Biochemical Engineering Journal, 2012, 67, 186-193.	1.8	13
47	Yeast-surface expressed BVDV E2 protein induces a Th1/Th2 response in na \tilde{A} -ve T cells. Developmental and Comparative Immunology, 2012, 37, 107-114.	1.0	20
48	A generic hierarchical screening method for the analysis of microscale refolds using an automated robotic platform. Biotechnology Progress, 2012, 28, 435-444.	1.3	13
49	Freeze drying formulation using microscale and design of experiment approaches: a case study using granulocyte colony-stimulating factor. Biotechnology Letters, 2012, 34, 641-648.	1.1	14
50	Directed evolution of a thermostable l-aminoacylase biocatalyst. Journal of Biotechnology, 2011, 155, 396-405.	1.9	10
51	Strategy and success for the directed evolution of enzymes. Current Opinion in Structural Biology, 2011, 21, 473-480.	2.6	161
52	Engineering and Design. Current Opinion in Structural Biology, 2011, 21, 450-451.	2.6	18
53	Optimal synthesis of chromatographic trains for downstream protein processing. Biotechnology Progress, 2011, 27, 1653-1660.	1.3	18
54	Thermodynamic parameters for saltâ€induced reversible protein precipitation from automated microscale experiments. Biotechnology and Bioengineering, 2011, 108, 322-332.	1.7	9

#	Article	IF	CITATIONS
55	A high-throughput fluorescence chemical denaturation assay as a general screen for protein–ligand binding. Analytical Biochemistry, 2011, 411, 155-157.	1.1	29
56	Structural stability of E. coli transketolase to temperature and pH denaturation. Journal of Biotechnology, 2011, 155, 209-216.	1.9	17
57	A toolbox approach for the rapid evaluation of multi-step enzymatic syntheses comprising a $\widehat{a} \in \mathbb{R}^m$ and match $\widehat{a} \in \mathbb{R}^m$: E. coli is expression system with microscale experimentation. Biocatalysis and Biotransformation, 2011, 29, 192-203.	1.1	18
58	Protein denaturation and protein:drugs interactions from intrinsic protein fluorescence measurements at the nanolitre scale. Protein Science, 2010, 19, 1544-1554.	3.1	22
59	Masking of the Fc region in human IgG4 by constrained X-ray scattering modelling: implications for antibody function and therapy. Biochemical Journal, 2010, 432, 101-114.	1.7	40
60	A Multidisciplinary Approach Toward the Rapid and Preparative-Scale Biocatalytic Synthesis of Chiral Amino Alcohols: A Concise Transketolase-/ĺ/‰-Transaminase-Mediated Synthesis of (2 <i>S</i> ,3 <i>S</i>)-2-Aminopentane-1,3-diol. Organic Process Research and Development, 2010, 14, 99-107.	1.3	80
61	î±,î±â€²-Dihydroxyketone formation using aromatic and heteroaromatic aldehydes with evolved transketolase enzymes. Chemical Communications, 2010, 46, 7608.	2.2	45
62	Non- \hat{l}_{\pm} -hydroxylated aldehydes with evolved transketolase enzymes. Organic and Biomolecular Chemistry, 2010, 8, 1301.	1.5	68
63	An MINLP Formulation for the Synthesis of Chromatographic Protein Purification Processes with Product Loss. Computer Aided Chemical Engineering, 2009, 26, 1057-1062.	0.3	2
64	Distributions of enzyme residues yielding mutants with improved substrate specificities from two different directed evolution strategies. Protein Engineering, Design and Selection, 2009, 22, 401-411.	1.0	38
65	Ultra scaleâ€down of protein refold screening in microwells: Challenges, solutions and application. Biotechnology and Bioengineering, 2009, 103, 329-340.	1.7	16
66	Rapid optimization of protein freezeâ€drying formulations using ultra scaleâ€down and factorial design of experiment in microplates. Biotechnology and Bioengineering, 2009, 104, 957-964.	1.7	30
67	Evolutionary Analysis of the TPP-Dependent Enzyme Family. Journal of Molecular Evolution, 2008, 66, 36-49.	0.8	66
68	A microplateâ€based evaluation of complex denaturation pathways: Structural stability of <i>Escherichia coli</i> transketolase. Biotechnology and Bioengineering, 2008, 99, 1303-1310.	1.7	16
69	Enhancing and Reversing the Stereoselectivity of <i>Escherichia coli</i> Transketolase <i>via</i> Singleâ€Point Mutations. Advanced Synthesis and Catalysis, 2008, 350, 2631-2638.	2.1	65
70	A new approach to bioconversion reaction kinetic parameter identification. AICHE Journal, 2008, 54, 2155-2163.	1.8	31
71	Directed evolution of transketolase substrate specificity towards an aliphatic aldehyde. Journal of Biotechnology, 2008, 134, 240-245.	1.9	69
72	Engineering Enzymes for Biocatalysis. Recent Patents on Biotechnology, 2007, 1, 1-9.	0.4	50

#	Article	lF	Citations
73	Structural stability of an enzyme biocatalyst. Biochemical Society Transactions, 2007, 35, 1606-1609.	1.6	8
74	Accelerating biocatalytic process design: Integrating new tools from biology, chemistry and engineering. Journal of Biotechnology, 2007, 131, S78.	1.9	0
75	Directed evolution of transketolase activity on non-phosphorylated substrates. Journal of Biotechnology, 2007, 131, 425-432.	1.9	74
76	One-pot synthesis of amino-alcohols using a de-novo transketolase and \hat{l}^2 -alanine: Pyruvate transaminase pathway inEscherichia coli. Biotechnology and Bioengineering, 2007, 96, 559-569.	1.7	132
77	Factors affecting protein refolding yields in a fed-batch and batch-refolding system. Biotechnology and Bioengineering, 2007, 97, 1523-1534.	1.7	20
78	Integration of biocatalytic conversions into chemical syntheses. Journal of Chemical Technology and Biotechnology, 2007, 82, 1063-1066.	1.6	40
79	Structural stability of E. coli transketolase to urea denaturation. Enzyme and Microbial Technology, 2007, 41, 653-662.	1.6	23
80	Optimisation and evaluation of a generic microplate-based HPLC screen for transketolase activity. Biotechnology Letters, 2007, 29, 1759-1770.	1.1	20
81	Reaction modelling and simulation to assess the integrated use of transketolase and i‰-transaminase for the synthesis of an aminotriol. Biocatalysis and Biotransformation, 2006, 24, 449-457.	1.1	28
82	A critical assessment of the impact of mixing on dilution refolding. Biotechnology and Bioengineering, 2006, 93, 955-963.	1.7	26
83	The First Mimetic of the Transketolase Reaction. European Journal of Organic Chemistry, 2006, 2006, 1121-1123.	1.2	30
84	Directed evolution of biocatalytic processes. New Biotechnology, 2005, 22, 11-19.	2.7	107
85	High-throughput measurement of protein stability in microtiter plates. Biotechnology and Bioengineering, 2005, 89, 599-607.	1.7	52
86	Directed evolution strategies for improved enzymatic performance. Microbial Cell Factories, 2005, 4, 29.	1.9	79
87	One-Pot Synthesis and the Integration of Chemical and Biocatalytic Conversions. , 2005, , 419-428.		6
88	Exposing relationships using directed evolution. Trends in Biotechnology, 2004, 22, 203-205.	4.9	2
89	Optimising enzyme function by directed evolution. Current Opinion in Structural Biology, 2003, 13, 500-505.	2.6	105
90	Accelerated design of bioconversion processes using automated microscale processing techniques. Trends in Biotechnology, 2003, 21, 29-37.	4.9	129

#	Article	IF	CITATION
91	Better Biocatalytic Processes Faster:Â New Tools for the Implementation of Biocatalysis in Organic Synthesis. Organic Process Research and Development, 2002, 6, 434-440.	1.3	41
92	Evolution of binding affinity in a WW domain probed by phage display. Protein Science, 2000, 9, 2366-2376.	3.1	34
93	Evolution of binding affinity in a WW domain probed by phage display. , 2000, 9, 2366.		5
94	Movement of the Intermediate and Rate Determining Transition State of Barnase on the Energy Landscape with Changing Temperature. Biochemistry, 1998, 37, 4674-4679.	1.2	44
95	Folding intermediates of wild-type and mutants of barnase. I. use of φ-value analysis and m-values to probe the cooperative nature of the folding pre-equilibrium. Journal of Molecular Biology, 1998, 276, 625-646.	2.0	56
96	Folding intermediates of wild-type and mutants of barnase. II. correlation of changes in equilibrium amide exchange kinetics with the population of the folding intermediate. Journal of Molecular Biology, 1998, 276, 647-656.	2.0	33