
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2863873/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Rapid and Specific Assay for the Detection of MERS-CoV. Frontiers in Microbiology, 2018, 9, 1101.	3.5	135
2	MERS-CoV virus-like particles produced in insect cells induce specific humoural and cellular imminity in rhesus macaques. Oncotarget, 2017, 8, 12686-12694.	1.8	126
3	Novel chimeric virus-like particles vaccine displaying MERS-CoV receptor-binding domain induce specific humoral and cellular immune response in mice. Antiviral Research, 2017, 140, 55-61.	4.1	79
4	Phylogenetic analysis of the VP2 gene of canine parvoviruses circulating in China. Virus Genes, 2010, 40, 397-402.	1.6	69
5	PB2-E627K and PA-T97I substitutions enhance polymerase activity and confer a virulent phenotype to an H6N1 avian influenza virus in mice. Virology, 2014, 468-470, 207-213.	2.4	62
6	DNA vaccine encoding Middle East respiratory syndrome coronavirus S1 protein induces protective immune responses in mice. Vaccine, 2017, 35, 2069-2075.	3.8	53
7	Innate immune response gene expression profiles in central nervous system of mice infected with rabies virus. Comparative Immunology, Microbiology and Infectious Diseases, 2011, 34, 503-512.	1.6	44
8	Analysis of expression profiles of long noncoding RNAs and mRNAs in brains of mice infected by rabies virus by RNA sequencing. Scientific Reports, 2018, 8, 11858.	3.3	41
9	Intracerebral Administration of Recombinant Rabies Virus Expressing GM-CSF Prevents the Development of Rabies after Infection with Street Virus. PLoS ONE, 2011, 6, e25414.	2.5	35
10	Adaptation of H9N2 AIV in guinea pigs enables efficient transmission by direct contact and inefficient transmission by respiratory droplets. Scientific Reports, 2015, 5, 15928.	3.3	35
11	Treatment with hyperimmune equine immunoglobulin or immunoglobulin fragments completely protects rodents from Ebola virus infection. Scientific Reports, 2016, 6, 24179.	3.3	33
12	A Novel Bacterium-Like Particle Vaccine Displaying the MERS-CoV Receptor-Binding Domain Induces Specific Mucosal and Systemic Immune Responses in Mice. Viruses, 2019, 11, 799.	3.3	32
13	Passive immunotherapy for Middle East Respiratory Syndrome coronavirus infection with equine immunoglobulin or immunoglobulin fragments in a mouse model. Antiviral Research, 2017, 137, 125-130.	4.1	28
14	Changes in microRNA expression induced by rabies virus infection in mouse brains. Microbial Pathogenesis, 2012, 52, 47-54.	2.9	27
15	Incorporation of membrane-anchored flagellin or Escherichia coli heat-labile enterotoxin B subunit enhances the immunogenicity of rabies virus-like particles in mice and dogs. Frontiers in Microbiology, 2015, 6, 169.	3.5	27
16	Visual detection of Ebola virus using reverse transcription loop-mediated isothermal amplification combined with nucleic acid strip detection. Archives of Virology, 2016, 161, 1125-1133.	2.1	26
17	Characterization of the Immune Response of MERS-CoV Vaccine Candidates Derived from Two Different Vectors in Mice. Viruses, 2020, 12, 125.	3.3	26
18	Adjuvant activity of PCP-II, a polysaccharide from Poria cocos, on a whole killed rabies vaccine. Virus Research, 2019, 270, 197638.	2.2	25

#	Article	IF	CITATIONS
19	Isolation and characterization of feline panleukopenia virus from a diarrheic monkey. Veterinary Microbiology, 2010, 143, 155-159.	1.9	24
20	H5N1 influenza virus-like particle vaccine protects mice from heterologous virus challenge better than whole inactivated virus. Virus Research, 2015, 200, 9-18.	2.2	24
21	Generation and evaluation of a recombinant genotype VII Newcastle disease virus expressing VP3 protein of Goose parvovirus as a bivalent vaccine in goslings. Virus Research, 2015, 203, 77-83.	2.2	24
22	Global gene expression changes in BV2 microglial cell line during rabies virus infection. Infection, Genetics and Evolution, 2013, 20, 257-269.	2.3	23
23	CpG/Poly (I:C) mixed adjuvant priming enhances the immunogenicity of a DNA vaccine against eastern equine encephalitis virus in mice. International Immunopharmacology, 2014, 19, 74-80.	3.8	22
24	Chimeric Rabies Virus-Like Particles Containing Membrane-Anchored GM-CSF Enhances the Immune Response against Rabies Virus. Viruses, 2015, 7, 1134-1152.	3.3	22
25	Characterization of Two Heterogeneous Lethal Mouse-Adapted SARS-CoV-2 Variants Recapitulating Representative Aspects of Human COVID-19. Frontiers in Immunology, 2022, 13, 821664.	4.8	22
26	Isolation and sequence analysis of the complete NS1 and VP2 genes of canine parvovirus from domestic dogs in 2013 and 2014 in China. Archives of Virology, 2016, 161, 385-393.	2.1	21
27	PB1 S524G mutation of wild bird-origin H3N8 influenza A virus enhances virulence and fitness for transmission in mammals. Emerging Microbes and Infections, 2021, 10, 1038-1051.	6.5	21
28	Infection with street strain rabies virus induces modulation of the microRNA profile of the mouse brain. Virology Journal, 2012, 9, 159.	3.4	20
29	Generation of Recombinant Rabies Virus CVS-11 Expressing eGFP Applied to the Rapid Virus Neutralization Test. Viruses, 2014, 6, 1578-1589.	3.3	20
30	Adaptive amino acid substitutions enhance the virulence of an H7N7 avian influenza virus isolated from wild waterfowl in mice. Veterinary Microbiology, 2015, 177, 18-24.	1.9	19
31	Isatis indigotica root polysaccharides as adjuvants for an inactivated rabies virus vaccine. International Journal of Biological Macromolecules, 2016, 87, 7-15.	7.5	19
32	Genetically Modified Rabies Virus Vector-Based Rift Valley Fever Virus Vaccine is Safe and Induces Efficacious Immune Responses in Mice. Viruses, 2019, 11, 919.	3.3	19
33	Adaptive amino acid substitutions enhance the virulence of a reassortant H7N1 avian influenza virus isolated from wild waterfowl in mice. Virology, 2015, 476, 233-239.	2.4	18
34	Using rabies virus vaccine strain SRV9 as viral vector to express exogenous gene. Virus Genes, 2015, 50, 299-302.	1.6	16
35	An adenovirus serotype 2-vectored ebolavirus vaccine generates robust antibody and cell-mediated immune responses in mice and rhesus macaques. Emerging Microbes and Infections, 2018, 7, 1-12.	6.5	16
36	Inclusion of membrane-anchored LTB or flagellin protein in H5N1 virus-like particles enhances protective responses following intramuscular and oral immunization of mice. Vaccine, 2018, 36, 5990-5998.	3.8	15

#	Article	IF	CITATIONS
37	Equine-Origin Immunoglobulin Fragments Protect Nonhuman Primates from Ebola Virus Disease. Journal of Virology, 2019, 93, .	3.4	14
38	Porcine epidemic diarrhea virus virus-like particles produced in insect cells induce specific immune responses in mice. Virus Genes, 2017, 53, 548-554.	1.6	13
39	Intramuscular and intranasal immunization with an H7N9 influenza virus-like particle vaccine protects mice against lethal influenza virus challenge. International Immunopharmacology, 2018, 58, 109-116.	3.8	13
40	Complete protection of cats against feline panleukopenia virus challenge by a recombinant canine adenovirus type 2 expressing VP2 from FPV. Vaccine, 2008, 26, 1482-1487.	3.8	12
41	Interferon-inducible GTPase: a novel viral response protein involved in rabies virus infection. Archives of Virology, 2016, 161, 1285-1293.	2.1	12
42	Isolation and phylogenetic analysis of three feline calicivirus strains from domestic cats in Jilin Province, China. Archives of Virology, 2017, 162, 2579-2589.	2.1	12
43	Construction and immunogenicity of a recombinant pseudotype baculovirus expressing the glycoprotein of rabies virus in mice. Archives of Virology, 2011, 156, 753-758.	2.1	11
44	A Novel Bacterium-Like Particle-Based Vaccine Displaying the SUDV Glycoprotein Induces Potent Humoral and Cellular Immune Responses in Mice. Viruses, 2019, 11, 1149.	3.3	11
45	An inactivated recombinant rabies virus displaying the Zika virus prM-E induces protective immunity against both pathogens. PLoS Neglected Tropical Diseases, 2021, 15, e0009484.	3.0	10
46	Autophagy is highly targeted among host comparative proteomes during infection with different virulent RABV strains. Oncotarget, 2017, 8, 21336-21350.	1.8	10
47	Inhibition of rabies virus replication by interferon-stimulated gene 15 and its activating enzyme UBA7. Infection, Genetics and Evolution, 2017, 56, 44-53.	2.3	9
48	Influenza virus-like particles composed of conserved influenza proteins and GPI-anchored CCL28/GM-CSF fusion proteins enhance protective immunity against homologous and heterologous viruses. International Immunopharmacology, 2018, 63, 119-128.	3.8	9
49	Development of a Visible Reverse Transcription-Loop-Mediated Isothermal Amplification Assay for the Detection of Rift Valley Fever Virus. Frontiers in Microbiology, 2020, 11, 590732.	3.5	9
50	Viral and Host Transcriptomes in SARS-CoV-2-Infected Human Lung Cells. Journal of Virology, 2021, 95, e0060021.	3.4	9
51	Development of a VLP-based vaccine in silkworm pupae against rabbit hemorrhagic disease virus. International Immunopharmacology, 2016, 40, 164-169.	3.8	8
52	Peste des Petits Ruminants Virus-Like Particles Induce a Potent Humoral and Cellular Immune Response in Goats. Viruses, 2019, 11, 918.	3.3	8
53	Development of a reverse genetics system for Japanese encephalitis virus strain SA14-14-2. Virus Genes, 2019, 55, 550-556.	1.6	8
54	Intranasal Immunization with Influenza Virus-Like Particles Containing Membrane-Anchored Cholera Toxin B or Ricin Toxin B Enhances Adaptive Immune Responses and Protection against an Antigenically Distinct Virus. Viruses, 2016, 8, 115.	3.3	7

#	Article	IF	CITATIONS
55	Marburg virus-like particles by co-expression of glycoprotein and matrix protein in insect cells induces immune responses in mice. Virology Journal, 2017, 14, 204.	3.4	7
56	Development of a reverse genetics system for a feline panleukopenia virus. Virus Genes, 2019, 55, 95-103.	1.6	6
57	Immunogenicity Assessment of Rift Valley Fever Virus Virus-Like Particles in BALB/c Mice. Frontiers in Veterinary Science, 2020, 7, 62.	2.2	6
58	A Chimeric Sudan Virus-Like Particle Vaccine Candidate Produced by a Recombinant Baculovirus System Induces Specific Immune Responses in Mice and Horses. Viruses, 2020, 12, 64.	3.3	6
59	Nucleic acid visualization assay for Middle East Respiratory Syndrome Coronavirus (MERS-CoV) by targeting the UpE and N gene. PLoS Neglected Tropical Diseases, 2021, 15, e0009227.	3.0	6
60	Equine Immunoglobulin and Equine Neutralizing F(ab′)2 Protect Mice from West Nile Virus Infection. Viruses, 2016, 8, 332.	3.3	5
61	A highly efficient recombinant canarypox virus-based vaccine against canine distemper virus constructed using the CRISPR/Cas9 gene editing method. Veterinary Microbiology, 2020, 251, 108920.	1.9	5
62	The Application of a Safe Neutralization Assay for Ebola Virus Using Lentivirus-Based Pseudotyped Virus. Virologica Sinica, 2021, 36, 1648-1651.	3.0	5
63	Packaging of Rift Valley fever virus pseudoviruses and establishment of a neutralization assay method. Journal of Veterinary Science, 2018, 19, 200.	1.3	5
64	Inactivated Rabies Virus Vectored MERS-Coronavirus Vaccine Induces Protective Immunity in Mice, Camels, and Alpacas. Frontiers in Immunology, 2022, 13, 823949.	4.8	5
65	Bacterium-Like Particles Displaying the Rift Valley Fever Virus Gn Head Protein Induces Efficacious Immune Responses in Immunized Mice. Frontiers in Microbiology, 2022, 13, 799942.	3.5	5
66	Equine immunoglobulin F(ab′)2 fragments protect mice from Rift Valley fever virus infection. International Immunopharmacology, 2018, 64, 217-222.	3.8	3
67	Development of recombinase polymerase amplification assays for rapid and visual detection of canine distemper virus infecting giant panda. BMC Veterinary Research, 2021, 17, 172.	1.9	3
68	Characteristics of Chimeric West Nile Virus Based on the Japanese Encephalitis Virus SA14-14-2 Backbone. Viruses, 2021, 13, 1262.	3.3	3
69	A Novel and Secure Pseudovirus Reporter System Based Assay for Neutralizing and Enhancing Antibody Assay Against Marburg Virus. Frontiers in Microbiology, 0, 13, .	3.5	3
70	Characterization of small metabolites alteration in mice brain tissues after infected by rabies virus. Infection, Genetics and Evolution, 2020, 85, 104571.	2.3	2
71	Quantitative characterization of the B cell receptor repertoires of human immunized with commercial rabies virus vaccine. Human Vaccines and Immunotherapeutics, 2021, 17, 2538-2546.	3.3	2
72	Quantitative characterization of the T cell receptor repertoires of human immunized by rabies virus vaccine. Human Vaccines and Immunotherapeutics, 2021, 17, 2530-2537.	3.3	1

#	Article	IF	CITATIONS
73	Molecular Phylogeny of an Avipoxvirus Isolated from Red-Flanked Blue Robin in China. Avian Diseases, 2019, 64, 2.	1.0	1
74	Western equine encephalitis virus virusâ€like particles from an insect cellâ€baculovirus system elicit the strong immune responses in mice. Biotechnology Journal, 2021, 16, 2100008.	3.5	0
75	Amino acid sites related to the PB2 subunits of IDV affect polymerase activity. Virology Journal, 2021, 18, 230.	3.4	Ο