
Lynne McLandsborough

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2862978/publications.pdf

Version: 2024-02-01

#	Article	lF	CITATIONS
1	Evaluation of the efficacy of antimicrobials against pathogens on food contact surfaces using a rapid microbial log reduction detection method. International Journal of Food Microbiology, 2022, 373, 109699.	2.1	3
2	Aptamer-based surface enhanced Raman spectroscopy (SERS) for the rapid detection of Salmonella Enteritidis contaminated in ground beef. LWT - Food Science and Technology, 2021, 150, 111937.	2.5	5
3	Impact of ripening inhibitors on molecular transport of antimicrobial components from essential oil nanoemulsions. Journal of Colloid and Interface Science, 2019, 556, 568-576.	5.0	31
4	Antimicrobial activity and chemical stability of cinnamon oil in oil-in-water nanoemulsions fabricated using the phase inversion temperature method. LWT - Food Science and Technology, 2019, 110, 190-196.	2.5	53
5	Antimicrobial activity of PIT-fabricated cinnamon oil nanoemulsions: Effect of surfactant concentration on morphology of foodborne pathogens. Food Control, 2019, 98, 405-411.	2.8	46
6	Natural antimicrobial delivery systems: Formulation, antimicrobial activity, and mechanism of action of quillaja saponin-stabilized carvacrol nanoemulsions. Food Hydrocolloids, 2018, 82, 442-450.	5.6	52
7	Rationalizing and advancing the 3-MPBA SERS sandwich assay for rapid detection of bacteria in environmental and food matrices. Food Microbiology, 2018, 72, 89-97.	2.1	24
8	Effect of ripening inhibitor type on formation, stability, and antimicrobial activity of thyme oil nanoemulsion. Food Chemistry, 2018, 245, 104-111.	4.2	86
9	Optimization of cinnamon oil nanoemulsions using phase inversion temperature method: Impact of oil phase composition and surfactant concentration. Journal of Colloid and Interface Science, 2018, 514, 208-216.	5.0	110
10	Influence of sprouting environment on the microbiota of sprouts. Journal of Food Safety, 2018, 38, e12380.	1.1	7
11	Antimicrobial polymer coatings with efficacy against pathogenic and spoilage microorganisms. LWT - Food Science and Technology, 2018, 97, 546-554.	2.5	30
12	Rapid concentration detection and differentiation of bacteria in skimmed milk using surface enhanced Raman scattering mapping on 4-mercaptophenylboronic acid functionalized silver dendrites. Analytical and Bioanalytical Chemistry, 2017, 409, 2229-2238.	1.9	41
13	Innovative sandwich assay with dual optical and SERS sensing mechanisms for bacterial detection. Analytical Methods, 2017, 9, 4732-4739.	1.3	35
14	Inactivation of Salmonella on Sprouting Seeds Using a Spontaneous Carvacrol Nanoemulsion Acidified with Organic Acids. Journal of Food Protection, 2016, 79, 1115-1126.	0.8	16
15	Label-free mapping of single bacterial cells using surface-enhanced Raman spectroscopy. Analyst, The, 2016, 141, 1356-1362.	1.7	70
16	Effectiveness of a spontaneous carvacrol nanoemulsion against Salmonella enterica Enteritidis and Escherichia coli O157:H7 onÂcontaminated broccoli and radish seeds. Food Microbiology, 2015, 51, 10-17.	2.1	64
17	Fabrication, stability and efficacy of dual-component antimicrobial nanoemulsions: Essential oil (thyme oil) and cationic surfactant (lauric arginate). Food Chemistry, 2015, 172, 298-304.	4.2	115
18	Effectiveness of a novel spontaneous carvacrol nanoemulsion against Salmonella enterica Enteritidis and Escherichia coli O157:H7 on contaminated mung bean and alfalfa seeds. International Journal of Food Microbiology, 2014, 187, 15-21.	2.1	53

#	Article	IF	CITATIONS
19	Interaction of cationic antimicrobial (É›-polylysine) with food-grade biopolymers: Dextran, chitosan, carrageenan, alginate, and pectin. Food Research International, 2014, 64, 396-401.	2.9	36
20	Disruption of Imo1386, a putative DNA translocase gene, affects biofilm formation of Listeria monocytogenes on abiotic surfaces. International Journal of Food Microbiology, 2013, 161, 158-163.	2.1	11
21	Physicochemical Properties and Antimicrobial Efficacy of Carvacrol Nanoemulsions Formed by Spontaneous Emulsification. Journal of Agricultural and Food Chemistry, 2013, 61, 8906-8913.	2.4	160
22	Development and Pilot Testing of a Food Safety Curriculum for Managers and Staff of Residential Childcare Institutions (RCCIs). Journal of Food Science Education, 2013, 12, 67-74.	1.0	3
23	Physical Properties and Antimicrobial Efficacy of Thyme Oil Nanoemulsions: Influence of Ripening Inhibitors. Journal of Agricultural and Food Chemistry, 2012, 60, 12056-12063.	2.4	196
24	Cationic Antimicrobial (ε-Polylysine)–Anionic Polysaccharide (Pectin) Interactions: Influence of Polymer Charge on Physical Stability and Antimicrobial Efficacy. Journal of Agricultural and Food Chemistry, 2012, 60, 1837-1844.	2.4	48
25	Low concentration of ethylenediaminetetraacetic acid (EDTA) affects biofilm formation of Listeria monocytogenes by inhibiting its initial adherence. Food Microbiology, 2012, 29, 10-17.	2.1	61
26	Identification of genes involved in Listeria monocytogenes biofilm formation by mariner-based transposon mutagenesis. Applied Microbiology and Biotechnology, 2012, 93, 2051-2062.	1.7	57
27	Physicochemical Properties and Antimicrobial Efficacy of Electrostatic Complexes Based on Cationic ε-Polylysine and Anionic Pectin. Journal of Agricultural and Food Chemistry, 2011, 59, 6776-6782.	2.4	50
28	Influence of Surfactant Charge on Antimicrobial Efficacy of Surfactant-Stabilized Thyme Oil Nanoemulsions. Journal of Agricultural and Food Chemistry, 2011, 59, 6247-6255.	2.4	208
29	Interactions of a Cationic Antimicrobial (ε-Polylysine) with an Anionic Biopolymer (Pectin): An Isothermal Titration Calorimetry, Microelectrophoresis, and Turbidity Study. Journal of Agricultural and Food Chemistry, 2011, 59, 5579-5588.	2.4	59
30	Deinococcus depolymerans sp. nov., a gamma- and UV-radiation-resistant bacterium, isolated from a naturally radioactive site. International Journal of Systematic and Evolutionary Microbiology, 2011, 61, 1448-1453.	0.8	51
31	Effects of Contact Time, Pressure, Percent Relative Humidity (%RH), and Material Type on Listeria Biofilm Adhesive Strength at a Cellular Level Using Atomic Force Microscopy (AFM). Food Biophysics, 2008, 3, 305-311.	1.4	12
32	Effects of Primers andTaqPolymerase on Randomly Amplified Polymorphic DNA Analysis for TypingListeria monocytogenesFrom the Environment of a Shrimp Processing Plant. Food Biotechnology, 2005, 19, 217-226.	0.6	3
33	High-frequency intracellular infection and erythrogenic toxin A expression undergo phase variation in M1 group A streptococci. Molecular Microbiology, 2002, 28, 157-167.	1.2	60
34	Interaction between Emulsion Droplets and Escherichia coli Cells. Journal of Food Science, 2001, 66, 570-657.	1.5	30
35	Studies on the Growth of Escherichia coli O157:H7 Strains at 45.5°C. Journal of Food Protection, 2000, 63, 1173-1178.	0.8	10