Ulrich Salzmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/286257/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Large-scale features of Pliocene climate: results from the Pliocene Model Intercomparison Project. Climate of the Past, 2013, 9, 191-209.	1.3	289
2	A new global biome reconstruction and dataâ€nodel comparison for the Middle Pliocene. Global Ecology and Biogeography, 2008, 17, 432-447.	2.7	275
3	Global vegetation dynamics and latitudinal temperature gradients during the Mid to Late Miocene (15.97–5.33Ma). Earth-Science Reviews, 2012, 112, 1-22.	4.0	266
4	Earth system sensitivity inferred from Pliocene modelling and data. Nature Geoscience, 2010, 3, 60-64.	5.4	230
5	The Dahomey Gap: an abrupt climatically induced rain forest fragmentation in West Africa during the late Holocene. Holocene, 2005, 15, 190-199.	0.9	225
6	Pliocene Model Intercomparison Project (PlioMIP): experimental design and boundary conditions (Experiment 1). Geoscientific Model Development, 2010, 3, 227-242.	1.3	168
7	A global synthesis of the marine and terrestrial evidence for glaciation during the Pliocene Epoch. Earth-Science Reviews, 2014, 135, 83-102.	4.0	159
8	A Tortonian (Late Miocene, 11.61–7.25Ma) global vegetation reconstruction. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 300, 29-45.	1.0	149
9	The PRISM4 (mid-Piacenzian) paleoenvironmental reconstruction. Climate of the Past, 2016, 12, 1519-1538.	1.3	143
10	Challenges in quantifying Pliocene terrestrial warming revealed by data–model discord. Nature Climate Change, 2013, 3, 969-974.	8.1	132
11	The DeepMIP contribution to PMIP4: methodologies for selection, compilation and analysis of latest Paleocene and early Eocene climate proxy data, incorporating version 0.1 of the DeepMIP database. Geoscientific Model Development, 2019, 12, 3149-3206.	1.3	131
12	Climate and environment of a Pliocene warm world. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 309, 1-8.	1.0	129
13	Sea Surface Temperature of the mid-Piacenzian Ocean: A Data-Model Comparison. Scientific Reports, 2013, 3, 2013.	1.6	124
14	Late Quaternary Climate and Vegetation of the Sudanian Zone of Northeast Nigeria. Quaternary Research, 2002, 58, 73-83.	1.0	123
15	The Pliocene Model Intercomparison Project (PlioMIP) Phase 2: scientific objectives and experimental design. Climate of the Past, 2016, 12, 663-675.	1.3	119
16	Palaeoenvironmental changes in the arid and sub arid belt (Sahara-Sahel-Arabian Peninsula) from 150 kyr to present. Developments in Paleoenvironmental Research, 2004, , 219-256.	7.5	117
17	Holocene changes in African vegetation: tradeoff between climate and water availability. Climate of the Past, 2014, 10, 681-686.	1.3	110
18	Sensitivity of Pliocene ice sheets to orbital forcing. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 309, 98-110.	1.0	106

ULRICH SALZMANN

#	Article	IF	CITATIONS
19	Heterogeneity in global vegetation and terrestrial climate change during the late Eocene to early Oligocene transition. Scientific Reports, 2017, 7, 43386.	1.6	104
20	Plant migration and plant communities at the time of the "green Sahara― Comptes Rendus - Geoscience, 2009, 341, .	0.4	103
21	On the causes of mid-Pliocene warmth and polar amplification. Earth and Planetary Science Letters, 2012, 321-322, 128-138.	1.8	97
22	Reorganization of Southern Ocean Plankton Ecosystem at the Onset of Antarctic Glaciation. Science, 2013, 340, 341-344.	6.0	97
23	Information from Paleoclimate Archives. , 2014, , 383-464.		95
24	The DeepMIP contribution to PMIP4: experimental design for model simulations of the EECO, PETM, and pre-PETM (version 1.0). Geoscientific Model Development, 2017, 10, 889-901.	1.3	90
25	The Eocene–Oligocene transition: a review of marine and terrestrial proxy data, models and model–data comparisons. Climate of the Past, 2021, 17, 269-315.	1.3	90
26	African pollen database inventory of tree and shrub pollen types. Review of Palaeobotany and Palynology, 2007, 145, 135-141.	0.8	85
27	Comparison of mid-Pliocene climate predictions produced by the HadAM3 and GCMAM3 General Circulation Models. Global and Planetary Change, 2009, 66, 208-224.	1.6	83
28	The Holocene vegetational history of the Nigerian Sahel based on multiple pollen profiles. Review of Palaeobotany and Palynology, 1998, 100, 39-72.	0.8	81
29	Southern Ocean warming and Wilkes Land ice sheet retreat during the mid-Miocene. Nature Communications, 2018, 9, 317.	5.8	80
30	The past is a guide to the future? Comparing Middle Pliocene vegetation with predicted biome distributions for the twenty-first century. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367, 189-204.	1.6	78
31	Are modern savannas degraded forests?-A Holocene pollen record from the Sudanian vagetation zone of NE Nigeria. Vegetation History and Archaeobotany, 2000, 9, 1-15.	1.0	71
32	On the identification of a Pliocene time slice for data–model comparison. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20120515.	1.6	69
33	Temperate rainforests near the South Pole during peak Cretaceous warmth. Nature, 2020, 580, 81-86.	13.7	69
34	Five thousand years of tropical lake sediment DNA records from Benin. Quaternary Science Reviews, 2017, 170, 203-211.	1.4	60
35	Comment on "Intensifying Weathering and Land Use in Iron Age Central Africa― Science, 2012, 337, 1040-1040.	6.0	50
36	Late Pliocene lakes and soils: a global data set for the analysis of climate feedbacks in a warmer world. Climate of the Past, 2014, 10, 167-180.	1.3	49

ULRICH SALZMANN

#	Article	IF	CITATIONS
37	Alpine permafrost could account for a quarter of thawed carbon based on Plio-Pleistocene paleoclimate analogue. Nature Communications, 2022, 13, 1329.	5.8	49
38	What can Palaeoclimate Modelling do for you?. Earth Systems and Environment, 2019, 3, 1-18.	3.0	47
39	The relative roles of CO ₂ and palaeogeography in determining late Miocene climate: results from a terrestrial model–data comparison. Climate of the Past, 2012, 8, 1257-1285.	1.3	45
40	El Niño–Southern Oscillation, Pliocene climate and equifinality. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367, 127-156.	1.6	44
41	Changes in Holocene climate and the intensity of Southern Hemisphere Westerly Winds based on a high-resolution palynological record from sub-Antarctic South Georgia. Holocene, 2015, 25, 263-279.	0.9	42
42	Paleoceanography and ice sheet variability offshore Wilkes Land, Antarctica – Part 1: Insights from late Oligocene astronomically paced contourite sedimentation. Climate of the Past, 2018, 14, 991-1014.	1.3	40
43	Pliocene aridification of Australia caused by tectonically induced weakening of the Indonesian throughflow. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 309, 111-117.	1.0	39
44	A methodology for targeting palaeo proxy data acquisition: A case study for the terrestrial late Miocene. Earth and Planetary Science Letters, 2008, 271, 53-62.	1.8	36
45	Periodic input of dust over the Eastern Carpathians during the Holocene linked with Saharan desertification and human impact. Climate of the Past, 2017, 13, 897-917.	1.3	36
46	Diversification, Intensification and Specialization: Changing Land Use in Western Africa from 1800 BC to AD 1500. Journal of World Prehistory, 2019, 32, 179-228.	1.1	34
47	Neogene glacigenic debris flows on James Ross Island, northern Antarctic Peninsula, and their implications for regional climate history. Quaternary Science Reviews, 2009, 28, 3138-3160.	1.4	30
48	Late Pliocene vegetation turnover on the NE Tibetan Plateau (Central Asia) triggered by early Northern Hemisphere glaciation. Global and Planetary Change, 2019, 180, 117-125.	1.6	28
49	Climate variability and long-term expansion of peatlands in Arctic Norway during the late Pliocene (ODP Site 642, Norwegian Sea). Climate of the Past, 2016, 12, 1043-1060.	1.3	24
50	Sebkhas as ecological archives and the vegetation and landscape history of southeastern Tunisia during the last two millennia. Journal of African Earth Sciences, 2002, 34, 223-229.	0.9	21
51	Detrital events and hydroclimate variability in the Romanian Carpathians during the mid-to-late Holocene. Quaternary Science Reviews, 2017, 167, 78-95.	1.4	21
52	How likely was a green Antarctic Peninsula during warm Pliocene interglacials? A critical reassessment based on new palynofloras from James Ross Island. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 309, 73-82.	1.0	19
53	Pliocene climate variability: Northern Annular Mode in models and tree-ring data. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 309, 118-127	1.0	18
54	Continental climate gradients in North America and Western Eurasia before and after the closure of the Central American Seaway. Earth and Planetary Science Letters, 2017, 472, 120-130.	1.8	16

ULRICH SALZMANN

#	Article	IF	CITATIONS
55	A late Holocene palaeoenvironmental â€~snapshot' of the Angamma Delta, Lake Megachad at the end of the African Humid Period. Quaternary Science Reviews, 2018, 202, 182-196.	1.4	15
56	A new quantitative approach to identify reworking in Eocene to Miocene pollen records from offshore Antarctica using red fluorescence and digital imaging. Biogeosciences, 2017, 14, 2089-2100.	1.3	14
57	Palynological evidence for a warmer boreal climate in the Late Pliocene of the Yukon Territory, Canada. Palynology, 2015, 39, 91-102.	0.7	13
58	Artisanal Fishery of the Mangrove Crab Ucides cordatus (Ucididae) and First Steps Toward a Successful Co-Management in Bragança, North Brazil. Ecological Studies, 2010, , 287-297.	0.4	11
59	Vegetation change across the Drake Passage region linked to late Eocene cooling and glacial disturbance after the Eocene–Oligocene transition. Climate of the Past, 2022, 18, 209-232.	1.3	11
60	Can uncertainties in sea ice albedo reconcile patterns of data-model discord for the Pliocene and 20th/21st centuries?. Geophysical Research Letters, 2014, 41, 2011-2018.	1.5	9
61	Joint insolation and ice sheet/CO2 forcing on northern China precipitation during Pliocene warmth. Science Bulletin, 2021, 66, 319-322.	4.3	9
62	Eocene-Oligocene paleoenvironmental changes in the South Orkney Microcontinent (Antarctica) linked to the opening of Powell Basin. Global and Planetary Change, 2021, 204, 103581.	1.6	8
63	Orbital, tectonic and oceanographic controls on Pliocene climate and atmospheric circulation in Arctic Norway. Global and Planetary Change, 2018, 161, 183-193.	1.6	7
64	The Lake CHAd Deep DRILLing project (CHADRILL) – targeting  â^¼â€‰10 million years of environmenta climate change in Africa. Scientific Drilling, 0, 24, 71-78.	and 1.0	7
65	Eocene to Oligocene vegetation and climate in the Tasmanian Gateway region were controlled by changes in ocean currents and & & amp;lt;i>pCO ₂ . Climate of the Past, 2022. 18. 525-546.	1.3	6
66	The warm winter paradox in the Pliocene northern high latitudes. Climate of the Past, 2022, 18, 1385-1405.	1.3	6
67	Multi-variate factorisation of numerical simulations. Geoscientific Model Development, 2021, 14, 4307-4317.	1.3	5
68	Midâ€Piacenzian Variability of Nordic Seas Surface Circulation Linked to Terrestrial Climatic Change in Norway. Paleoceanography, 2017, 32, 1336-1351.	3.0	4
69	A new global biome reconstruction and data-model comparison for the Middle Pliocene. Global Ecology and Biogeography, 2008, , .	2.7	3
70	Controls of precipitation and vegetation variability on the NE Tibetan Plateau during the late Pliocene warmth (~3.5–3.0ÂMa). Global and Planetary Change, 2022, 208, 103707.	1.6	3
71	Deep water inflow slowed offshore expansion of the West Antarctic Ice Sheet at the Eocene-Oligocene transition. Communications Earth & Environment, 2022, 3, .	2.6	3
72	African Hydroclimate During the Early Eocene From the DeepMIP Simulations. Paleoceanography and Paleoclimatology, 2022, 37, .	1.3	3

#	Article	IF	CITATIONS
73	Corrigendum to ''The relative roles of CO ₂ and palaeogeography in determining late Miocene climate: results from a terrestrial model-data comparison'' published in Clim. Past, 8, 1257–1285, 2012. Climate of the Past, 2012, 8, 1301-1307.	1.3	2
74	Corrigendum to "The relative roles of CO ₂ and palaeogeography in determining late Miocene climate: results from a terrestrial model–data comparison" published in Clim. Past, 8, 1257–1285, 2012. Climate of the Past, 2014, 10, 199-206.	1.3	1
75	The Mangrove Information System MAIS: Managing and Integrating Interdisciplinary Research Data. Ecological Studies, 2010, , 355-364.	0.4	1
76	Pliocene climate variability over glacial-interglacial timescales (PlioVAR) working group. Past Global Change Magazine, 2015, 23, 82-82.	0.4	1
77	Triumph and Fall of the Wet, Warm, and Never-More-Diverse Temperate Forests (Oligocene-Pliocene). Springer Textbooks in Earth Sciences, Geography and Environment, 2020, , 55-81.	0.1	1
78	Die westafrikanische Savanne - eine Zeitreise durch 20 000 Jahre. , 2005, , 39-68.		0
79	Deep-Time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies <i>Edited by</i> M. Williams, A.M. Haywood, F.J. Gregory & D.N. Schmidt The Geological Society, 2007. ISBN 1-86239-240-4, £95 (fellows £57). Antarctic Science, 2008, 20, 609-610.	0.5	0
80	Lessons of the mid-Pliocene: Planet Earth's last interval of greater global warmth. IOP Conference Series: Earth and Environmental Science, 2009, 6, 072003.	0.2	0