Sownak Bose

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2861675/sownak-bose-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

81 23,216 41 86 g-index

86 28,620 6.4 5.37 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
81	Dynamics of intermediate-mass black holes wandering in the milky way galaxy using the illustris TNG50 simulation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2022 , 511, 2229-2238	4.3	2
80	Constructing high-fidelity halo merger trees in abacussummit. <i>Monthly Notices of the Royal Astronomical Society</i> , 2022 , 512, 837-854	4.3	О
79	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. <i>Astrophysical Journal</i> , 2021 , 909, 218	4.7	46
78	Measuring the Mass and Concentration of Dark Matter Halos from the Velocity Dispersion Profile of their Stars. <i>Astrophysical Journal</i> , 2021 , 912, 114	4.7	2
77	Morphological Types of DM Halos in Milky Way-like Galaxies in the TNG50 Simulation: Simple, Twisted, or Stretched. <i>Astrophysical Journal</i> , 2021 , 913, 36	4.7	3
76	Constraints on Cosmic Strings Using Data from the Third Advanced LIGO-Virgo Observing Run. <i>Physical Review Letters</i> , 2021 , 126, 241102	7.4	21
75	Evidence for galaxy assembly bias in BOSS CMASS redshift-space galaxy correlation function. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 502, 3582-3598	4.3	16
74	The galaxyfialo connection of emission-line galaxies in IllustrisTNG. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 502, 3599-3617	4.3	13
73	Degeneracies between baryons and dark matter: the challenge of constraining the nature of dark matter with JWST. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 506, 4139-4150	4.3	3
72	Inferring the Morphology of Stellar Distribution in TNG50: Twisted and Twisted-stretched Shapes. <i>Astrophysical Journal</i> , 2021 , 918, 7	4.7	O
71	Galaxy assembly bias and large-scale distribution: a comparison between IllustrisTNG and a semi-analytic model. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 508, 698-718	4.3	7
70	The little things matter: relating the abundance of ultrafaint satellites to the hosts assembly history. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 495, 743-757	4.3	16
69	Galaxy formation with BECDM III. Cosmic filaments and first galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 494, 2027-2044	4.3	22
68	Rapid Reionization by the Oligarchs: The Case for Massive, UV-bright, Star-forming Galaxies with High Escape Fractions. <i>Astrophysical Journal</i> , 2020 , 892, 109	4.7	77
67	The BUFFALO HST Survey. Astrophysical Journal, Supplement Series, 2020, 247, 64	8	21
66	The accuracy of weak lensing simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 493, 305-319	4.3	13
65	Extensions to models of the galaxyfialo connection. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 501, 1603-1620	4.3	15

(2018-2020)

64	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. <i>Living Reviews in Relativity</i> , 2020 , 23, 3	32.5	144
63	Limitations to the BasicIHOD model and beyond. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 493, 5506-5519	4.3	32
62	Universal structure of dark matter haloes over a mass range of 20 orders of magnitude. <i>Nature</i> , 2020 , 585, 39-42	50.4	58
61	GW190521: A Binary Black Hole Merger with a Total Mass of 150 M_{?}. <i>Physical Review Letters</i> , 2020 , 125, 101102	7.4	420
60	No cores in dark matter-dominated dwarf galaxies with bursty star formation histories. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 486, 4790-4804	4.3	43
59	The signal of decaying dark matter with hydrodynamical simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 485, 4071-4089	4.3	7
58	ETHOS Ian Effective Theory of Structure Formation: detecting dark matter interactions through the Lyman-Forest. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 487, 522-536	4.3	15
57	Simulating the Dark Matter Decay Signal from the Perseus Galaxy Cluster. <i>Astrophysical Journal Letters</i> , 2019 , 875, L24	7.9	О
56	The SantiagoHarvardEdinburghDurham void comparison II: unveiling the Vainshtein screening using weak lensing. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 484, 1149-1165	4.3	24
55	On the road topercent accuracy: non-linear reaction of the matter power spectrum to dark energy and modified gravity. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 488, 2121-2142	4.3	41
54	Tests of General Relativity with GW170817. Physical Review Letters, 2019, 123, 011102	7.4	204
53	Revealing the galaxyfialo connection in IllustrisTNG. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 490, 5693-5711	4.3	27
52	Search for Subsolar Mass Ultracompact Binaries in Advanced LIGO's Second Observing Run. <i>Physical Review Letters</i> , 2019 , 123, 161102	7.4	68
51	First Star-Forming Structures in Fuzzy Cosmic Filaments. <i>Physical Review Letters</i> , 2019 , 123, 141301	7.4	50
50	Constraining the p-Mode-g-Mode Tidal Instability with GW170817. <i>Physical Review Letters</i> , 2019 , 122, 061104	7.4	22
49	GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences. <i>Physical Review Letters</i> , 2018 , 120, 091101	7.4	120
48	First Search for Nontensorial Gravitational Waves from Known Pulsars. <i>Physical Review Letters</i> , 2018 , 120, 031104	7.4	50
47	The Imprint of Cosmic Reionization on the Luminosity Function of Galaxies. <i>Astrophysical Journal</i> , 2018 , 863, 123	4.7	33

46	Reionisation in Sterile Neutrino Cosmologies. Springer Theses, 2018, 77-100	0.1	
45	Substructure and Galaxy Formation in Warm Dark Matter Simulations. <i>Springer Theses</i> , 2018 , 51-75	0.1	
44	Statistical Properties of Warm Dark Matter Haloes. Springer Theses, 2018, 15-50	0.1	
43	Speeding up N-Body Simulations of Modified Gravity: Chameleon Screening Models. <i>Springer Theses</i> , 2018 , 139-159	0.1	
42	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA 2018 , 21, 1		2
41	Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO's First Observing Run. <i>Physical Review Letters</i> , 2018 , 121, 231103	7.4	49
40	The SantiagoHarvardEdinburghDurham void comparison []. SHEDding light on chameleon gravity tests. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 476, 3195-3217	4.3	53
39	A Redshift-independent Efficiency Model: Star Formation and Stellar Masses in Dark Matter Halos at z ? 4. <i>Astrophysical Journal</i> , 2018 , 868, 92	4.7	88
38	GW170817: Measurements of Neutron Star Radii and Equation of State. <i>Physical Review Letters</i> , 2018 , 121, 161101	7.4	867
37	Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background. <i>Physical Review Letters</i> , 2018 , 120, 201102	7.4	60
36	Dating the Tidal Disruption of Globular Clusters with GAIA Data on Their Stellar Streams. <i>Astrophysical Journal Letters</i> , 2018 , 859, L13	7.9	5
35	Weak lensing by galaxy troughs with modified gravity. <i>Journal of Cosmology and Astroparticle Physics</i> , 2017 , 2017, 031-031	6.4	20
34	Speeding upN-body simulations of modified gravity: chameleon screening models. <i>Journal of Cosmology and Astroparticle Physics</i> , 2017 , 2017, 050-050	6.4	25
33	Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run. <i>Physical Review Letters</i> , 2017 , 118, 121101	7.4	137
32	Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run. <i>Physical Review Letters</i> , 2017 , 118, 121102	7.4	65
31	Substructure and galaxy formation in the Copernicus Complexio warm dark matter simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 464, 4520-4533	4.3	62
30	GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. <i>Physical Review Letters</i> , 2017 , 119, 141101	7.4	1270
29	GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. <i>Physical Review Letters</i> , 2017 , 119, 161101	7.4	4272

(2016-2017)

28	Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. <i>Astrophysical Journal Letters</i> , 2017 , 848, L13	7.9	1614
27	Addressing the too big to fail problem with baryon physics and sterile neutrino dark matter. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 468, 2836-2849	4.3	34
26	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. <i>Astrophysical Journal</i> , 2017 , 841, 89	4.7	42
25	GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. <i>Physical Review Letters</i> , 2017 , 118, 221101	7.4	1609
24	Properties of Local Group galaxies in hydrodynamical simulations of sterile neutrino dark matter cosmologies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 468, 4285-4298	4.3	44
23	GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. <i>Physical Review Letters</i> , 2016 , 116, 131102	7.4	188
22	GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. <i>Physical Review Letters</i> , 2016 , 116, 131103	7.4	328
21	Tests of General Relativity with GW150914. <i>Physical Review Letters</i> , 2016 , 116, 221101	7.4	837
20	Properties of the Binary Black Hole Merger GW150914. Physical Review Letters, 2016, 116, 241102	7.4	515
19	GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. <i>Physical Review Letters</i> , 2016 , 116, 241103	7.4	2136
18	Satellite galaxies in semi-analytic models of galaxy formation with sterile neutrino dark matter. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 461, 60-72	4.3	61
17	The massfloncentrationfledshift relation of cold and warm dark matter haloes. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 460, 1214-1232	4.3	153
16	Observation of Gravitational Waves from a Binary Black Hole Merger. <i>Physical Review Letters</i> , 2016 , 116, 061102	7.4	6108
15	The Copernicus Complexio: a high-resolution view of the small-scale Universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 457, 3492-3509	4.3	65
14	The Copernicus Complexio: statistical properties of warm dark matter haloes. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 455, 318-333	4.3	79
13	The extraordinary amount of substructure in theHubble Frontier Fieldscluster Abell 2744. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 463, 3876-3893	4.3	69
12	Constraining SN feedback: a tug of war between reionization and the Milky Way satellites. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 463, 1224-1239	4.3	8
11	Reionization in sterile neutrino cosmologies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 463, 3848-3859	4.3	27

10	RAY-RAMSES: a code for ray tracing on the fly in N-body simulations. <i>Journal of Cosmology and Astroparticle Physics</i> , 2016 , 2016, 001-001	6.4	16
9	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. <i>Living Reviews in Relativity</i> , 2016 , 19, 1	32.5	393
8	Constraints on the identity of the dark matter from strong gravitational lenses. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 460, 363-372	4.3	44
7	Testing the quasi-static approximation inf(R) gravity simulations. <i>Journal of Cosmology and Astroparticle Physics</i> , 2015 , 2015, 034-034	6.4	43
6	Modified gravityN-body code comparison project. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 454, 4208-4234	4.3	83
5	Planes of satellite galaxies: when exceptions are the rule. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 452, 3838-3852	4.3	62
4	Speeding up N-body simulations of modified gravity: Vainshtein screening models. <i>Journal of Cosmology and Astroparticle Physics</i> , 2015 , 2015, 059-059	6.4	24
3	AbacusHOD: A highly efficient extended multi-tracer HOD framework and its application to BOSS and eBOSS data. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	1
2	compaso: A new halo finder for competitive assignment to spherical overdensities. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	3
1	AbacusSummit: A Massive Set of High-Accuracy, High-Resolution N-Body Simulations. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	14