Pavel A Kosintsev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2861282/publications.pdf

Version: 2024-02-01

623734 395702 34 1,828 14 33 citations g-index h-index papers 35 35 35 3491 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Genome sequence of a 45,000-year-old modern human from western Siberia. Nature, 2014, 514, 445-449.	27.8	856
2	Tracking Five Millennia of Horse Management with Extensive Ancient Genome Time Series. Cell, 2019, 177, 1419-1435.e31.	28.9	195
3	The origins and spread of domestic horses from the Western Eurasian steppes. Nature, 2021, 598, 634-640.	27.8	142
4	Early cave art and ancient DNA record the origin of European bison. Nature Communications, 2016, 7, 13158.	12.8	81
5	Evolution and extinction of the giant rhinoceros Elasmotherium sibiricum sheds light on late Quaternary megafaunal extinctions. Nature Ecology and Evolution, 2019, 3, 31-38.	7.8	50
6	Ancient and modern genomes unravel the evolutionary history of the rhinoceros family. Cell, 2021, 184, 4874-4885.e16.	28.9	49
7	Synchronous genetic turnovers across Western Eurasia in Late Pleistocene collared lemmings. Global Change Biology, 2016, 22, 1710-1721.	9.5	45
8	Dire wolves were the last of an ancient New World canid lineage. Nature, 2021, 591, 87-91.	27.8	43
9	Paternal phylogeographic structure of the brown bear (Ursus arctos) in northeastern Asia and the effect of male-mediated gene flow to insular populations. Zoological Letters, 2017, 3, 21.	1.3	42
10	Megafaunal isotopes reveal role of increased moisture on rangeland during late Pleistocene extinctions. Nature Ecology and Evolution, 2017, 1, 125.	7.8	35
11	Subspecies dynamics in space and time: A study of the red deer complex using ancient and modern <scp>DNA</scp> and morphology. Journal of Biogeography, 2018, 45, 367-380.	3.0	30
12	Three-Dimensional Geometric Morphometric Analysis of Fossil Canid Mandibles and Skulls. Scientific Reports, 2017, 7, 9508.	3.3	28
13	Phylogenetics and phylogeography of red deer mtDNA lineages during the last 50 000 years in Eurasia. Zoological Journal of the Linnean Society, 2022, 194, 431-456.	2.3	23
14	Human and Dog Consumption of Fish on the Lower Ob River of Siberia: Evidence for a Major Freshwater Reservoir Effect at the Ust'-Polui Site. Radiocarbon, 2018, 60, 239-260.	1.8	19
15	Modern Siberian dog ancestry was shaped by several thousand years of Eurasian-wide trade and human dispersal. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	19
16	Population dynamics and range shifts of moose (<i>Alces alces</i>) during the Late Quaternary. Journal of Biogeography, 2020, 47, 2223-2234.	3.0	16
17	Lions and brown bears colonized North America in multiple synchronous waves of dispersal across the Bering Land Bridge. Molecular Ecology, 2022, 31, 6407-6421.	3.9	15
18	Differentiation of three Martes species (M.Âmartes, M.Âzibellina, M.Âfoina) by tooth morphotypes. Comptes Rendus - Palevol, 2015, 14, 647-656.	0.2	12

#	Article	IF	CITATIONS
19	EarlyÂPleistocene origin and extensive intra-species diversity of the extinct cave lion. Scientific Reports, 2020, 10, 12621.	3.3	12
20	Quaternary deposits and biostratigraphy in caves and grottoes located in the Southern Urals (Russia). Quaternary International, 2020, 546, 84-124.	1.5	12
21	Chronology and Faunal Remains of the Khayrgas Cave (Eastern Siberia, Russia). Radiocarbon, 2017, 59, 575-582.	1.8	11
22	Diversity of MHC class II DRB alleles in the Eurasian population of the least weasel, Mustela nivalis (Mustelidae: Mammalia). Biological Journal of the Linnean Society, 2017, 121, 28-37.	1.6	11
23	The Paleolithic diet of Siberia and Eastern Europe: evidence based on stable isotopes ($\hat{l}'13C$ and $\hat{l}'15N$) in hominin and animal bone collagen. Archaeological and Anthropological Sciences, 2021, 13, 1.	1.8	10
24	Evolution of MHC class I genes in Eurasian badgers, genus Meles (Carnivora, Mustelidae). Heredity, 2019, 122, 205-218.	2.6	9
25	Japanese Wolves are Genetically Divided into Two Groups Based on an 8-Nucleotide Insertion/Deletion within the mtDNA Control Region. Zoological Science, 2016, 33, 44-49.	0.7	8
26	Holocene changes in the distributions of Asian and European badgers (Carnivora: Mustelidae: Meles) inferred from ancient DNA analysis. Biological Journal of the Linnean Society, 2020, 129, 594-602.	1.6	5
27	Comparative phylogeography of the endemic Japanese weasel (Mustela itatsi) and the continental Siberian weasel (Mustela sibirica) revealed by complete mitochondrial genome sequences. Biological Journal of the Linnean Society, 2016, , .	1.6	4
28	Variability of the upper incisors in the cave bears (Carnivora, Ursidae) from the Caucasus and Urals. Comptes Rendus - Palevol, 2019, 18, 209-222.	0.2	4
29	Phylogeography and population history of the least weasel (<i>Mustela nivalis</i>) in the Palearctic based on multilocus analysis. Journal of Zoological Systematics and Evolutionary Research, 2020, 58, 408-426.	1.4	4
30	Phylogenetic relationships of ancient brown bears (Ursus arctos) on Sakhalin Island, revealed by APLP and PCR-direct sequencing analyses of mitochondrial DNA. Mammal Research, 2021, 66, 95-102.	1.3	3
31	Palaeoecological and genetic analyses of Late Pleistocene bears in Asiatic Russia. Boreas, 2022, 51, 465-480.	2.4	3
32	Patterns of Change in a Nenets Landscape: An Ethnoarcheological Study of Yangana Pe, Polar Ural Mts. Russia. Human Ecology, 2015, 43, 283-294.	1.4	2
33	²³⁰ Th dating of flowstone from Ignatievskaya Cave, Russia: Age constraints of rock art and paleoclimate inferences. Geoarchaeology - an International Journal, 2021, 36, 532-545.	1.5	2
34	Reindeer Demographics at larte VI, lamal Peninsula, Arctic Siberia. Environmental Archaeology, 2024, 29, 182-191.	1,2	1