Nicola Lamberti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2860781/publications.pdf

Version: 2024-02-01

44 501 12 papers citations h-index

44 44 318
all docs docs citations times ranked citing authors

21

g-index

#	Article	IF	CITATIONS
1	Reverberation Reduction in Capacitive Micromachined Ultrasonic Transducers (CMUTs) by Front-face Reflectivity Minimization. Physics Procedia, 2015, 70, 941-944.	1.2	6
2	PECVD low stress silicon nitride analysis and optimization for the fabrication of CMUT devices. Journal of Micromechanics and Microengineering, 2015, 25, 015012.	2.6	40
3	ACUPAD: A track-pad device based on a piezoelectric bimorph. Sensors and Actuators A: Physical, 2015, 222, 130-139.	4.1	7
4	A low frequency broadband flexural mode ultrasonic transducer for immersion applications. , 2014, , .		3
5	A vibrating stylus as two-dimensional PC input device. , 2013, , .		О
6	Phase shift micro-beamforming of CMUT arrays using the spring-softening effect., 2013,,.		1
7	Fluid film force control in lubricated journal bearings by means of a travelling wave generated with a piezoelectric actuators' system. , 2012, , .		O
8	A high frequency cMUT probe for ultrasound imaging of fingerprints. Sensors and Actuators A: Physical, 2011, 172, 561-569.	4.1	51
9	A track-pad device based on a piezoelectric bimorph. , 2011, , .		3
10	An ultrasound technique for monitoring the alcoholic wine fermentation. Ultrasonics, 2009, 49, 94-97.	3.9	36
11	Comment on "The use of real or complex coupling coefficients for lossy piezoelectric materials. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2009, 56, 2334-2336.	3.0	1
12	P2I-4 Design and Experimental Characterization of an Composite Longitudinal-Flexural Mode Ultrasonic Transducer. Proceedings IEEE Ultrasonics Symposium, 2007, , .	0.0	0
13	48-2 Influence of the Number of Driving Transducers on the Performance of a High Power Travelling Wave Ultrasonic Motor., 2006,,.		2
14	Extension to the definition of quasistatic material coupling factor to include losses. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52, 1026-1034.	3.0	9
15	An approximated 3-D model of the Langevin transducer and its experimental validation. Journal of the Acoustical Society of America, 2002, 111, 2675-2680.	1.1	28
16	A New Technique for the Design of Acoustic Matching Layers for Piezocomposite Transducers. , 2002, , 505-515.		0
17	Characterization of piezoceramic rectangular parallelepipeds by means of a two-dimensional model. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2001, 48, 113-120.	3.0	5
18	INFLUENCE OF THE INTER-ELEMENT COUPLING ON ULTRASOUND ARRAY RADIATION PATTERNS. Journal of Computational Acoustics, 2001, 09, 773-788.	1.0	2

#	Article	IF	Citations
19	Two-dimensional modelling of multifrequency piezocomposites. Ultrasonics, 2000, 37, 577-583.	3.9	4
20	A matrix model of the axle vibration of a piezoelectric motor. Ultrasonics, 2000, 38, 41-45.	3.9	9
21	Multifrequency piezoelectric composites: one-dimensional modeling. Ultrasonics, 1999, 37, 97-105.	3.9	8
22	Analysis of the radial symmetrical modes of thin piezoceramic rings. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1999, 46, 1047-1049.	3.0	14
23	Analysis and experimental evaluation of a new planar piezoelectric accelerometer. IEEE/ASME Transactions on Mechatronics, 1999, 4, 207-212.	5.8	9
24	A piezoelectric motor using flexural vibration of a thin piezoelectric membrane. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1998, 45, 23-29.	3.0	30
25	An approximated 3-D model of cylinder-shaped piezoceramic elements for transducer design. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1998, 45, 1056-1064.	3.0	41
26	A new low voltage piezoelectric micromotor based on stator precessional motion. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1998, 45, 1427-1435.	3.0	31
27	A displacement amplifier using mechanical demodulation. Applied Physics Letters, 1998, 73, 2573-2575.	3.3	2
28	A New Three-Dimensional Model of Piezoelectric Elements for Composite Materials. Acoustical Imaging, 1997, , 349-354.	0.2	3
29	A new approach for the design of ultrasono-therapy transducers. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1997, 44, 77-84.	3.0	23
30	A model for the theoretical characterization of thin piezoceramic rings. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1996, 43, 370-375.	3.0	34
31	Experimental Validation of a Piezoceramic Annular Plate Theoretical Model. Acoustical Imaging, 1996 , , $451-457$.	0.2	2
32	A piezoelectric bimorph static pressure sensor. Sensors and Actuators A: Physical, 1995, 46, 176-178.	4.1	34
33	A general approximated two-dimensional model for piezoelectric array elements. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1995, 42, 243-252.	3.0	34
34	A New Three-Dimensional Model for Circular Piezoelectric Transducers. Acoustical Imaging, 1995, , 139-144.	0.2	4
35	A piezoelectric range sensor for thickness measurements in refractory materials. Sensors and Actuators A: Physical, 1993, 37-38, 381-384.	4.1	2
36	Thickness Measurements Based on a New Time Discrimination Technique., 1993,, 303-306.		0

#	Article	IF	CITATIONS
37	A two-dimensional model for bounded resonant piezoelectric ceramic plate., 0,,.		6
38	A 3-D model of the classical Langevin transducer. , 0, , .		4
39	A high frequency ultrasonic bistoury designed to reduce friction trauma in cystectomy operations. , 0, , .		4
40	3D finite element analysis of the Langevin transducer. , 0, , .		7
41	A method for the measurement of the k factor in lossy piezoelectric materials. , 0, , .		1
42	FEA and experimental characterization of langevin transducers with comparable longitudinal and lateral dimensions. , 0, , .		1
43	A method for the measurement of the k factor in lossy piezoelectric materials: fem and experimental results. , 0, , .		O
44	A power ultrasonic actuator based on a displacement amplifier vibrating in flexural mode. , 0, , .		0