Daniela Gwiazdowska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2860737/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antifungal activity of selected essential oils against Fusarium culmorum and F. graminearum and their secondary metabolites in wheat seeds. Archives of Microbiology, 2019, 201, 1085-1097.	1.0	64
2	The impact of polyphenols on Bifidobacterium growth. Acta Biochimica Polonica, 2015, 62, 895-901.	0.3	62
3	Electrochemical detection of foodborne pathogen Aeromonas hydrophila by DNA hybridization biosensor. Biosensors and Bioelectronics, 2010, 26, 1618-1623.	5.3	53
4	Electrochemical DNA biosensor for the detection of pathogenic bacteria Aeromonas hydrophila. Electrochimica Acta, 2014, 128, 67-74.	2.6	53
5	The Inhibitory Potential of Selected Essential Oils on Fusarium spp. Growth and Mycotoxins Biosynthesis in Maize Seeds. Pathogens, 2020, 9, 23.	1.2	36
6	Ionic Liquids Derived from Vitamin C as Multifunctional Active Ingredients for Sustainable Stored-Product Management. ACS Sustainable Chemistry and Engineering, 2019, 7, 1072-1084.	3.2	35
7	Degradation of Zearalenone by Essential Oils under In vitro Conditions. Frontiers in Microbiology, 2016, 7, 1224.	1.5	31
8	The Efficiency of Deoxynivalenol Degradation by Essential Oils under In Vitro Conditions. Foods, 2019, 8, 403.	1.9	25
9	Probiotic potential of lactic acid bacteria obtained from fermented curly kale juice. Archives of Microbiology, 2021, 203, 975-988.	1.0	25
10	Surface and Antimicrobial Activity of Sulfobetaines. Journal of Surfactants and Detergents, 2016, 19, 813-822.	1.0	23
11	Editorial: Management of Fusarium Species and their Mycotoxins in Cereal Food and Feed. Frontiers in Microbiology, 2017, 8, 1543.	1.5	23
12	Synthesis, Properties, and Antimicrobial Activity of 1-Alkyl-4-hydroxy-1-methylpiperidinium Ionic Liquids with Mandelate Anion. ACS Sustainable Chemistry and Engineering, 2019, 7, 15053-15063.	3.2	21
13	Choline-based ionic liquids as adjuvants in pesticide formulation. Journal of Molecular Liquids, 2021, 327, 114792.	2.3	19
14	Glycine betaine-based ionic liquids and their influence on bacteria, fungi, insects and plants. New Journal of Chemistry, 2021, 45, 6344-6355.	1.4	17
15	Spontaneously fermented curly kale juice: Microbiological quality, nutritional composition, antioxidant, and antimicrobial properties. Journal of Food Science, 2020, 85, 1248-1255.	1.5	16
16	Difunctional ammonium ionic liquids with bicyclic cations. New Journal of Chemistry, 2019, 43, 4477-4488.	1.4	15
17	Antimicrobial activity and stability of partially purified bacteriocins produced byPropionibacterium freudenreichiissp.freudenreichiiand ssp.shermanii. Dairy Science and Technology, 2006, 86, 141-154.	0.9	14
18	Isolation and probiotic potential of lactic acid bacteria from swine feces for feed additive composition. Archives of Microbiology, 2022, 204, 61.	1.0	12

Daniela Gwiazdowska

#	Article	IF	CITATIONS
19	Controlled fermentation of curly kale juice with the use of autochthonous starter cultures. Food Research International, 2021, 149, 110674.	2.9	8
20	Amino acid-based dicationic ionic liquids as complex crop protection agents. Journal of Molecular Liquids, 2022, 360, 119357.	2.3	8
21	The Concentration-Dependent Effects of Essential Oils on the Growth of Fusarium graminearum and Mycotoxins Biosynthesis in Wheat and Maize Grain. Applied Sciences (Switzerland), 2022, 12, 473.	1.3	7
22	Effects of Propionibacterium on the growth and mycotoxin production by some species of Fusarium and Alternaria. Polish Journal of Microbiology, 2008, 57, 205-12.	0.6	7
23	Antioxidant, Antimicrobial and Antibiofilm Properties of Glechoma hederacea Extracts Obtained by Supercritical Fluid Extraction, Using Different Extraction Conditions. Applied Sciences (Switzerland), 2022, 12, 3572.	1.3	7
24	Synthesis, Surface and Antimicrobial Activity of New Lactose-Based Surfactants. Molecules, 2019, 24, 4010.	1.7	5
25	Antimicrobial activity of organic–inorganic hybrid films based on gelatin and organomodified silicones. Advances in Polymer Technology, 2018, 37, 2958-2970.	0.8	4
26	Antioxidant and antibacterial properties of lemon, sweet, and cereal grasses. Journal of Food Processing and Preservation, 2020, 44, e14984.	0.9	3
27	Wykorzystanie bakterii glebowych z rodzaju Brevibacillus do dekontaminacji zearalenonu. Studia Oeconomica Posnaniensia, 2016, 4, 27-39.	0.3	2
28	Bifunctional Double-Salt Ionic Liquids Containing both 4-Chloro-2-Methylphenoxyacetate and <scp>l</scp> -Tryptophanate Anions with Herbicidal and Antimicrobial Activity. ACS Omega, 2021, 6, 33779-33791.	1.6	1
29	Consumer Behaviour on the Non-Dairy Fermented Market. Annales Universitatis Mariae Curie-SkÅ,odowska Sectio H Oeconomia, 2021, 55, 117-131.	0.2	0
30	Special Issue "Antimicrobial Substances in Plants: Discovery of New Compounds, Properties, Food and Agriculture Applications, and Sustainable Recoveryâ€. Applied Sciences (Switzerland), 2022, 12, 5021.	1.3	0