Zhenan Bao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2860503/publications.pdf

Version: 2024-02-01

735 139,362 papers citations

190 h-index 349 g-index

762 all docs 762 docs citations

762 times ranked 73282 citing authors

#	Article	IF	CITATIONS
1	Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors. ACS Nano, 2008, 2, 463-470.	7.3	2,955
2	Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nature Nanotechnology, 2011, 6, 788-792.	15.6	2,839
3	Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nature Materials, 2010, 9, 859-864.	13.3	2,749
4	Pathways for practical high-energy long-cycling lithium metal batteries. Nature Energy, 2019, 4, 180-186.	19.8	2,101
5	25th Anniversary Article: The Evolution of Electronic Skin (Eâ€6kin): A Brief History, Design Considerations, and Recent Progress. Advanced Materials, 2013, 25, 5997-6038.	11.1	2,001
6	Pursuing prosthetic electronic skin. Nature Materials, 2016, 15, 937-950.	13.3	1,821
7	Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nature Communications, 2013, 4, 1859.	5.8	1,713
8	Soluble and processable regioregular poly(3â€hexylthiophene) for thin film fieldâ€effect transistor applications with high mobility. Applied Physics Letters, 1996, 69, 4108-4110.	1.5	1,616
9	Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature, 2018, 555, 83-88.	13.7	1,588
10	Integrated Materials Design of Organic Semiconductors for Field-Effect Transistors. Journal of the American Chemical Society, 2013, 135, 6724-6746.	6.6	1,280
11	The rise of plastic bioelectronics. Nature, 2016, 540, 379-385.	13.7	1,280
12	An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nature Nanotechnology, 2012, 7, 825-832.	15.6	1,270
13	Large-scale complementary integrated circuits based on organic transistors. Nature, 2000, 403, 521-523.	13.7	1,239
14	An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nature Communications, 2014, 5, 3002.	5.8	1,225
15	Solution-Processed Graphene/MnO ₂ Nanostructured Textiles for High-Performance Electrochemical Capacitors. Nano Letters, 2011, 11, 2905-2911.	4.5	1,195
16	Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method. Nature Communications, 2014, 5, 3005.	5.8	1,155
17	Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nature Communications, 2013, 4, 1943.	5.8	1,138
18	A highly stretchable autonomous self-healing elastomer. Nature Chemistry, 2016, 8, 618-624.	6.6	1,133

#	Article	IF	Citations
19	Paper-like electronic displays: Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 4835-4840.	3.3	1,078
20	Enhancing the Supercapacitor Performance of Graphene/MnO ₂ Nanostructured Electrodes by Conductive Wrapping. Nano Letters, 2011, 11, 4438-4442.	4.5	1,062
21	Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice. Nature Nanotechnology, 2014, 9, 233-239.	15.6	1,057
22	A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale, 2013, 5, 1727.	2.8	1,037
23	Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nature Chemistry, 2013, 5, 1042-1048.	6.6	1,031
24	Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature, 2016, 539, 411-415.	13.7	1,030
25	Highly Conductive and Transparent PEDOT:PSS Films with a Fluorosurfactant for Stretchable and Flexible Transparent Electrodes. Advanced Functional Materials, 2012, 22, 421-428.	7.8	1,026
26	Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9287-9292.	3.3	1,025
27	A bioinspired flexible organic artificial afferent nerve. Science, 2018, 360, 998-1003.	6.0	982
28	Tuning charge transport in solution-sheared organic semiconductors using lattice strain. Nature, 2011, 480, 504-508.	13.7	981
29	Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy, 2013, 2, 213-234.	8.2	976
30	Patterning organic single-crystal transistor arrays. Nature, 2006, 444, 913-917.	13.7	963
31	A highly stretchable, transparent, and conductive polymer. Science Advances, 2017, 3, e1602076.	4.7	962
32	Electronic Skin: Recent Progress and Future Prospects for Skinâ€Attachable Devices for Health Monitoring, Robotics, and Prosthetics. Advanced Materials, 2019, 31, e1904765.	11.1	936
33	Side Chain Engineering in Solution-Processable Conjugated Polymers. Chemistry of Materials, 2014, 26, 604-615.	3.2	932
34	Organic Light-Emitting Diodes on Solution-Processed Graphene Transparent Electrodes. ACS Nano, 2010, 4, 43-48.	7.3	908
35	Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science, 2017, 355, 59-64.	6.0	897
36	Solution coating of large-area organic semiconductor thin films with aligned single-crystalline domains. Nature Materials, 2013, 12, 665-671.	13.3	881

#	Article	IF	CITATIONS
37	Organic solar cells with solution-processed graphene transparent electrodes. Applied Physics Letters, 2008, 92, .	1.5	856
38	Synthetic Chemistry for Ultrapure, Processable, and High-Mobility Organic Transistor Semiconductors. Accounts of Chemical Research, 2001, 34, 359-369.	7.6	841
39	New Air-Stablen-Channel Organic Thin Film Transistors. Journal of the American Chemical Society, 1998, 120, 207-208.	6.6	836
40	Improving the Performance of Lithium–Sulfur Batteries by Conductive Polymer Coating. ACS Nano, 2011, 5, 9187-9193.	7.3	815
41	Tough and Waterâ€Insensitive Selfâ€Healing Elastomer for Robust Electronic Skin. Advanced Materials, 2018, 30, e1706846.	11.1	798
42	Robust and conductive two-dimensional metalâ^organic frameworks with exceptionally high volumetric and areal capacitance. Nature Energy, 2018, 3, 30-36.	19.8	786
43	Stretchable Organic Solar Cells. Advanced Materials, 2011, 23, 1771-1775.	11.1	754
44	A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing. Nature Communications, 2015, 6, 8011.	5.8	749
45	Organic fieldâ€effect transistors with high mobility based on copper phthalocyanine. Applied Physics Letters, 1996, 69, 3066-3068.	1.5	745
46	An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network. Nature Nanotechnology, 2018, 13, 1057-1065.	15.6	736
47	A skin-inspired organic digital mechanoreceptor. Science, 2015, 350, 313-316.	6.0	708
48	Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nature Energy, 2020, 5, 526-533.	19.8	642
49	Siloxane-Terminated Solubilizing Side Chains: Bringing Conjugated Polymer Backbones Closer and Boosting Hole Mobilities in Thin-Film Transistors. Journal of the American Chemical Society, 2011, 133, 20130-20133.	6.6	628
50	Nanostructured conductive polypyrrole hydrogels as high-performance, flexible supercapacitor electrodes. Journal of Materials Chemistry A, 2014, 2, 6086-6091.	5.2	624
51	Highly Skinâ€Conformal Microhairy Sensor for Pulse Signal Amplification. Advanced Materials, 2015, 27, 634-640.	11.1	621
52	High-Performance Air-Stable n-Channel Organic Thin Film Transistors Based on Halogenated Perylene Bisimide Semiconductors. Journal of the American Chemical Society, 2009, 131, 6215-6228.	6.6	619
53	Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow. Nature Biomedical Engineering, 2019, 3, 47-57.	11.6	580
54	Designing polymers for advanced battery chemistries. Nature Reviews Materials, 2019, 4, 312-330.	23.3	579

#	Article	IF	CITATIONS
55	Self-Sorted, Aligned Nanotube Networks for Thin-Film Transistors. Science, 2008, 321, 101-104.	6.0	571
56	A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics. Science Robotics, 2018, 3, .	9.9	568
57	Crystalline Ultrasmooth Self-Assembled Monolayers of Alkylsilanes for Organic Field-Effect Transistors. Journal of the American Chemical Society, 2009, 131, 9396-9404.	6.6	562
58	Effect of Mesoscale Crystalline Structure on the Field-Effect Mobility of Regioregular Poly(3-hexyl) Tj ETQq0 0 0 0	gBJ /Over 7.8	lock 10 Tf 50 546
59	A Sensitive and Biodegradable Pressure Sensor Array for Cardiovascular Monitoring. Advanced Materials, 2015, 27, 6954-6961.	11.1	544
60	Effects of Thermal Annealing Upon the Morphology of Polymer–Fullerene Blends. Advanced Functional Materials, 2010, 20, 3519-3529.	7.8	539
61	Stretchable and self-healing polymers and devices for electronic skin. Progress in Polymer Science, 2013, 38, 1961-1977.	11.8	539
62	Morphology control strategies for solution-processed organic semiconductor thin films. Energy and Environmental Science, 2014, 7, 2145-2159.	15.6	535
63	High-Performance Plastic Transistors Fabricated by Printing Techniques. Chemistry of Materials, 1997, 9, 1299-1301.	3.2	525
64	Electronic Properties of Transparent Conductive Films of PEDOT:PSS on Stretchable Substrates. Chemistry of Materials, 2012, 24, 373-382.	3.2	503
65	Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nature Biomedical Engineering, 2019, 3, 58-68.	11.6	499
66	Halogenated Materials as Organic Semiconductors. Chemistry of Materials, 2011, 23, 446-455.	3.2	489
67	Skin-inspired electronic devices. Materials Today, 2014, 17, 321-331.	8.3	487
68	Electronic sensing of vapors with organic transistors. Applied Physics Letters, 2001, 78, 2229-2231.	1.5	486
69	High-Mobility Field-Effect Transistors from Large-Area Solution-Grown Aligned C ₆₀ Single Crystals. Journal of the American Chemical Society, 2012, 134, 2760-2765.	6.6	481
70	Stretchable Energyâ€Harvesting Tactile Electronic Skin Capable of Differentiating Multiple Mechanical Stimuli Modes. Advanced Materials, 2014, 26, 7324-7332.	11.1	481
71	Doped Organic Transistors. Chemical Reviews, 2016, 116, 13714-13751.	23.0	477
72	A stretchable and biodegradable strain and pressure sensor for orthopaedic application. Nature Electronics, 2018, 1, 314-321.	13.1	469

#	Article	IF	Citations
73	Quadruple H-Bonding Cross-Linked Supramolecular Polymeric Materials as Substrates for Stretchable, Antitearing, and Self-Healable Thin Film Electrodes. Journal of the American Chemical Society, 2018, 140, 5280-5289.	6.6	464
74	Self-healing soft electronics. Nature Electronics, 2019, 2, 144-150.	13.1	464
75	Lithium Metal Anodes with an Adaptive "Solid-Liquid―Interfacial Protective Layer. Journal of the American Chemical Society, 2017, 139, 4815-4820.	6.6	460
76	Stretchable Self-Healing Polymeric Dielectrics Cross-Linked Through Metal–Ligand Coordination. Journal of the American Chemical Society, 2016, 138, 6020-6027.	6.6	453
77	Organic Semiconductor Growth and Morphology Considerations for Organic Thinâ€Film Transistors. Advanced Materials, 2010, 22, 3857-3875.	11.1	451
78	Tunable Flexible Pressure Sensors using Microstructured Elastomer Geometries for Intuitive Electronics. Advanced Functional Materials, 2014, 24, 5427-5434.	7.8	424
79	A wireless body area sensor network based on stretchable passive tags. Nature Electronics, 2019, 2, 361-368.	13.1	421
80	Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care. Nature Communications, 2014, 5, 5028.	5.8	418
81	Perylenediimide Nanowires and Their Use in Fabricating Field-Effect Transistors and Complementary Inverters. Nano Letters, 2007, 7, 2847-2853.	4.5	410
82	Transparent, Optical, Pressureâ€Sensitive Artificial Skin for Largeâ€Area Stretchable Electronics. Advanced Materials, 2012, 24, 3223-3227.	11.1	410
83	Skin-Inspired Electronics: An Emerging Paradigm. Accounts of Chemical Research, 2018, 51, 1033-1045.	7.6	407
84	Hierarchical N-Doped Carbon as CO ₂ Adsorbent with High CO ₂ Selectivity from Rationally Designed Polypyrrole Precursor. Journal of the American Chemical Society, 2016, 138, 1001-1009.	6.6	405
85	Multifunctional materials for implantable and wearable photonic healthcare devices. Nature Reviews Materials, 2020, 5, 149-165.	23.3	403
86	Surface Fluorination of Reactive Battery Anode Materials for Enhanced Stability. Journal of the American Chemical Society, 2017, 139, 11550-11558.	6.6	398
87	The Physical Chemistry of Organic Field-Effect Transistors. Journal of Physical Chemistry B, 2000, 104, 671-678.	1.2	396
88	Organic Thinâ€Film Transistors Fabricated on Resorbable Biomaterial Substrates. Advanced Materials, 2010, 22, 651-655.	11.1	384
89	Organic single-crystal field-effect transistors. Materials Today, 2007, 10, 20-27.	8.3	381
90	Flexible and Stretchable Devices. Advanced Materials, 2016, 28, 4177-4179.	11.1	378

#	Article	IF	Citations
91	A Flexible Bimodal Sensor Array for Simultaneous Sensing of Pressure and Temperature. Advanced Materials, 2014, 26, 796-804.	11.1	375
92	High-performance sodium–organic battery by realizing four-sodium storage in disodium rhodizonate. Nature Energy, 2017, 2, 861-868.	19.8	372
93	Organic thin film transistors. Materials Today, 2004, 7, 20-27.	8.3	369
94	Thin Film Deposition, Patterning, and Printing in Organic Thin Film Transistors. Chemistry of Materials, 2004, 16, 4824-4840.	3.2	368
95	Materials and structural designs of stretchable conductors. Chemical Society Reviews, 2019, 48, 2946-2966.	18.7	367
96	Highly stable organic polymer field-effect transistor sensor for selective detection in the marine environment. Nature Communications, 2014, 5, 2954.	5.8	362
97	Introducing organic nanowire transistors. Materials Today, 2008, 11, 38-47.	8.3	359
98	Stretchable organic optoelectronic sensorimotor synapse. Science Advances, 2018, 4, eaat7387.	4.7	359
99	Stretchable, elastic materials and devices for solar energy conversion. Energy and Environmental Science, 2011, 4, 3314.	15.6	356
100	Synthesis, Crystal Structure, and Transistor Performance of Tetracene Derivatives. Journal of the American Chemical Society, 2004, 126, 15322-15323.	6.6	353
101	Use of a 1 <i>H</i> -Benzoimidazole Derivative as an <i>n</i> -Type Dopant and To Enable Air-Stable Solution-Processed <i>n</i> -Channel Organic Thin-Film Transistors. Journal of the American Chemical Society, 2010, 132, 8852-8853.	6.6	353
102	Materials and Fabrication Needs for Low-Cost Organic Transistor Circuits. Advanced Materials, 2000, 12, 227-230.	11.1	351
103	Stabilization of Hexaaminobenzene in a 2D Conductive Metal–Organic Framework for High Power Sodium Storage. Journal of the American Chemical Society, 2018, 140, 10315-10323.	6.6	351
104	A Stiff and Healable Polymer Based on Dynamicâ€Covalent Boroxine Bonds. Advanced Materials, 2016, 28, 8277-8282.	11.1	349
105	Biocompatible and totally disintegrable semiconducting polymer for ultrathin and ultralightweight transient electronics. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5107-5112.	3.3	347
106	Mechanically tunable conductive interpenetrating network hydrogels that mimic the elastic moduli of biological tissue. Nature Communications, 2018, 9, 2740.	5.8	344
107	Artificial multimodal receptors based on ion relaxation dynamics. Science, 2020, 370, 961-965.	6.0	343
108	Controlled Deposition of Crystalline Organic Semiconductors for Fieldâ€Effectâ€Transistor Applications. Advanced Materials, 2009, 21, 1217-1232.	11.1	342

#	Article	IF	CITATIONS
109	Electronic skins and machine learning for intelligent soft robots. Science Robotics, 2020, 5, .	9.9	339
110	A Crystalâ€Engineered Hydrogenâ€Bonded Octachloroperylene Diimide with a Twisted Core: An nâ€Channel Organic Semiconductor. Angewandte Chemie - International Edition, 2010, 49, 740-743.	7.2	337
111	Rational solvent molecule tuning for high-performance lithium metal battery electrolytes. Nature Energy, 2022, 7, 94-106.	19.8	336
112	Light amplification in organic thin films using cascade energy transfer. Nature, 1997, 389, 466-469.	13.7	334
113	Chlorination: A General Route toward Electron Transport in Organic Semiconductors. Journal of the American Chemical Society, 2009, 131, 3733-3740.	6.6	334
114	Selective dispersion of high purity semiconducting single-walled carbon nanotubes with regionegular poly(3-alkylthiophene)s. Nature Communications, 2011, 2, 541.	5.8	333
115	Organic smart pixels. Applied Physics Letters, 1998, 73, 142-144.	1.5	330
116	Water-stable organic transistors and their application in chemical and biological sensors. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12134-12139.	3.3	327
117	The meniscus-guided deposition of semiconducting polymers. Nature Communications, 2018, 9, 534.	5.8	324
118	From computational discovery to experimental characterization of a high hole mobility organic crystal. Nature Communications, 2011, 2, 437.	5.8	321
119	High Performance Allâ€Polymer Solar Cell via Polymer Sideâ€Chain Engineering. Advanced Materials, 2014, 26, 3767-3772.	11.1	320
120	Concentrated mixed cation acetate "water-in-salt―solutions as green and low-cost high voltage electrolytes for aqueous batteries. Energy and Environmental Science, 2018, 11, 2876-2883.	15.6	315
121	Designing Boron Nitride Islands in Carbon Materials for Efficient Electrochemical Synthesis of Hydrogen Peroxide. Journal of the American Chemical Society, 2018, 140, 7851-7859.	6.6	310
122	Printable organic and polymeric semiconducting materials and devices. Journal of Materials Chemistry, 1999, 9, 1895-1904.	6.7	308
123	Effects of Polymer Coatings on Electrodeposited Lithium Metal. Journal of the American Chemical Society, 2018, 140, 11735-11744.	6.6	307
124	High-Performance Organic Single-Crystal Transistors on Flexible Substrates. Advanced Materials, 2006, 18, 2320-2324.	11.1	306
125	Diketopyrrolopyrroleâ€Based Semiconducting Polymer Nanoparticles for In Vivo Photoacoustic Imaging. Advanced Materials, 2015, 27, 5184-5190.	11.1	305
126	Biodegradable Polymeric Materials in Degradable Electronic Devices. ACS Central Science, 2018, 4, 337-348.	5.3	302

#	Article	IF	Citations
127	Conductance of Small Molecular Junctions. Physical Review Letters, 2002, 88, 226801.	2.9	298
128	Exploration of the Stille Coupling Reaction for the Synthesis of Functional Polymers. Journal of the American Chemical Society, 1995, 117, 12426-12435.	6.6	297
129	Conducting AFM and 2D GIXD Studies on Pentacene Thin Films. Journal of the American Chemical Society, 2005, 127, 11542-11543.	6.6	291
130	Microengineering Pressure Sensor Active Layers for Improved Performance. Advanced Functional Materials, 2020, 30, 2003491.	7.8	290
131	Chemical and Engineering Approaches To Enable Organic Field-Effect Transistors for Electronic Skin Applications. Accounts of Chemical Research, 2012, 45, 361-371.	7.6	287
132	Flexible Wireless Temperature Sensors Based on Ni Microparticleâ€Filled Binary Polymer Composites. Advanced Materials, 2013, 25, 850-855.	11.1	281
133	High-Performance Lithium Metal Negative Electrode with a Soft and Flowable Polymer Coating. ACS Energy Letters, 2016, 1, 1247-1255.	8.8	281
134	A Threeâ€Dimensionally Interconnected Carbon Nanotube–Conducting Polymer Hydrogel Network for Highâ€Performance Flexible Battery Electrodes. Advanced Energy Materials, 2014, 4, 1400207.	10.2	280
135	An Elastic Autonomous Selfâ€Healing Capacitive Sensor Based on a Dynamic Dual Crosslinked Chemical System. Advanced Materials, 2018, 30, e1801435.	11.1	280
136	Highâ€Performance Organic Thinâ€Film Transistors through Solutionâ€Sheared Deposition of Smallâ€Molecule Organic Semiconductors. Advanced Materials, 2008, 20, 2588-2594.	11.1	275
137	Fabrication of Field-Effect Transistors from Hexathiapentacene Single-Crystal Nanowires. Nano Letters, 2007, 7, 668-675.	4.5	272
138	Rational Design of Capacitive Pressure Sensors Based on Pyramidal Microstructures for Specialized Monitoring of Biosignals. Advanced Functional Materials, 2020, 30, 1903100.	7.8	265
139	Graphene–sponges as high-performance low-cost anodes for microbial fuel cells. Energy and Environmental Science, 2012, 5, 6862.	15.6	264
140	Stretchable temperature-sensing circuits with strain suppression based on carbon nanotube transistors. Nature Electronics, 2018, 1, 183-190.	13.1	263
141	Oligofluoreneâ^'Thiophene Derivatives as High-Performance Semiconductors for Organic Thin Film Transistors. Chemistry of Materials, 2003, 15, 1778-1787.	3.2	258
142	Thermodynamically stable whilst kinetically labile coordination bonds lead to strong and tough self-healing polymers. Nature Communications, 2019, 10, 1164.	5.8	258
143	Ambipolar, High Performance, Acene-Based Organic Thin Film Transistors. Journal of the American Chemical Society, 2008, 130, 6064-6065.	6.6	256
144	Wireless smart contact lens for diabetic diagnosis and therapy. Science Advances, 2020, 6, eaba3252.	4.7	255

#	Article	IF	Citations
145	Fast and reversible thermoresponsive polymer switching materials for safer batteries. Nature Energy, $2016, 1, .$	19.8	253
146	Multi-scale ordering in highly stretchable polymer semiconducting films. Nature Materials, 2019, 18, 594-601.	13.3	251
147	Decoupling of mechanical properties and ionic conductivity in supramolecular lithium ion conductors. Nature Communications, 2019, 10, 5384.	5.8	249
148	Ultrahigh electrical conductivity in solution-sheared polymeric transparent films. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14138-14143.	3.3	248
149	3D Porous Spongeâ€Inspired Electrode for Stretchable Lithiumâ€Ion Batteries. Advanced Materials, 2016, 28, 3578-3583.	11.1	247
150	Conjugated liquid-crystalline polymers - soluble and fusible poly(phenylenevinylene) by the Heck coupling reaction. Macromolecules, 1993, 26, 5281-5286.	2.2	244
151	Selective metal deposition at graphene line defects by atomic layer deposition. Nature Communications, 2014, 5, 4781.	5.8	243
152	Polypyrrole/Agarose-Based Electronically Conductive and Reversibly Restorable Hydrogel. ACS Nano, 2014, 8, 10066-10076.	7.3	236
153	Defective Carbon-Based Materials for the Electrochemical Synthesis of Hydrogen Peroxide. ACS Sustainable Chemistry and Engineering, 2018, 6, 311-317.	3.2	236
154	Mechanically Durable and Highly Stretchable Transistors Employing Carbon Nanotube Semiconductor and Electrodes. Advanced Materials, 2016, 28, 4441-4448.	11.1	234
155	Ultratransparent and stretchable graphene electrodes. Science Advances, 2017, 3, e1700159.	4.7	231
156	Coreâ∈Fluorinated Perylene Bisimide Dyes: Air Stable nâ€Channel Organic Semiconductors for Thin Film Transistors with Exceptionally High Onâ€toâ€Off Current Ratios. Advanced Materials, 2007, 19, 3692-3695.	11.1	230
157	Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics. Science, 2022, 375, 1411-1417.	6.0	230
158	Humidity effect on electrical performance of organic thin-film transistors. Applied Physics Letters, 2005, 86, 042105.	1.5	229
159	Patterned Growth of Large Oriented Organic Semiconductor Single Crystals on Self-Assembled Monolayer Templates. Journal of the American Chemical Society, 2005, 127, 12164-12165.	6.6	229
160	The Role of OTS Density on Pentacene and C ₆₀ Nucleation, Thin Film Growth, and Transistor Performance. Advanced Functional Materials, 2009, 19, 1962-1970.	7.8	227
161	Liquid-Crystalline Semiconducting Copolymers with Intramolecular Donorâ^'Acceptor Building Blocks for High-Stability Polymer Transistors. Journal of the American Chemical Society, 2009, 131, 6124-6132.	6.6	225
162	A New Class of Ionically Conducting Fluorinated Ether Electrolytes with High Electrochemical Stability. Journal of the American Chemical Society, 2020, 142, 7393-7403.	6.6	225

#	Article	IF	CITATIONS
163	Ionically Conductive Selfâ€Healing Binder for Low Cost Si Microparticles Anodes in Liâ€Ion Batteries. Advanced Energy Materials, 2018, 8, 1703138.	10.2	224
164	Printing Process Suitable for Reel-to-Reel Production of High-Performance Organic Transistors and Circuits. Advanced Materials, 1999, 11, 741-745.	11.1	223
165	Correlating Carrier Type with Frontier Molecular Orbital Energy Levels in Organic Thin Film Transistors of Functionalized Acene Derivatives. Journal of the American Chemical Society, 2009, 131, 5264-5273.	6.6	221
166	Highâ€Performance Airâ€Stable nâ€Type Organic Transistors Based on Coreâ€Chlorinated Naphthalene Tetracarboxylic Diimides. Advanced Functional Materials, 2010, 20, 2148-2156.	7.8	221
167	A Rapid and Efficient Selfâ€Healing Thermoâ€Reversible Elastomer Crosslinked with Graphene Oxide. Advanced Materials, 2013, 25, 5785-5790.	11.1	221
168	Flow-enhanced solution printing of all-polymer solar cells. Nature Communications, 2015, 6, 7955.	5. 8	221
169	Fabrication of low-cost electronic biosensors. Materials Today, 2009, 12, 12-20.	8.3	219
170	Solution-processed, high-performance n-channel organic microwire transistors. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6065-6070.	3.3	218
171	Cross-Linked Polymer Gate Dielectric Films for Low-Voltage Organic Transistors. Chemistry of Materials, 2009, 21, 2292-2299.	3.2	218
172	Highly ordered vacuum-deposited thin films of metallophthalocyanines and their applications in field-effect transistors. Advanced Materials, 1997, 9, 42-44.	11.1	216
173	Rollâ€toâ€Roll Printed Largeâ€Area Allâ€Polymer Solar Cells with 5% Efficiency Based on a Low Crystallinity Conjugated Polymer Blend. Advanced Energy Materials, 2017, 7, 1602742.	10.2	214
174	Air Stablen-Channel Organic Semiconductors for Thin Film Transistors Based on Fluorinated Derivatives of Perylene Diimides. Chemistry of Materials, 2007, 19, 816-824.	3.2	213
175	High-Performance Organic Semiconductors:Â Asymmetric Linear Acenes Containing Sulphur. Journal of the American Chemical Society, 2006, 128, 16002-16003.	6.6	209
176	Stretchable electrochemical energy storage devices. Chemical Society Reviews, 2020, 49, 4466-4495.	18.7	209
177	Oxadiazole-Containing Conjugated Polymers for Light-Emitting Diodes. Advanced Materials, 1998, 10, 680-684.	11.1	208
178	Ultrahigh Surface Area Three-Dimensional Porous Graphitic Carbon from Conjugated Polymeric Molecular Framework. ACS Central Science, 2015, 1, 68-76.	5. 3	207
179	Highâ€Arealâ€Capacity Silicon Electrodes with Lowâ€Cost Silicon Particles Based on Spatial Control of Selfâ€Healing Binder. Advanced Energy Materials, 2015, 5, 1401826.	10.2	207
180	High Field-Effect Mobility Oligofluorene Derivatives with High Environmental Stability. Journal of the American Chemical Society, 2001, 123, 9214-9215.	6.6	206

#	Article	IF	Citations
181	Tetramethylpentacene: Remarkable Absence of Steric Effect on Field Effect Mobility. Advanced Materials, 2003, 15, 1090-1093.	11.1	206
182	Air-Stable n-Channel Organic Semiconductors Based on Perylene Diimide Derivatives without Strong Electron Withdrawing Groups. Advanced Materials, 2007, 19, 1123-1127.	11.1	206
183	Steric Effect Tuned Ion Solvation Enabling Stable Cycling of High-Voltage Lithium Metal Battery. Journal of the American Chemical Society, 2021, 143, 18703-18713.	6.6	205
184	Mechanistic Study on the Solution-Phase n-Doping of 1,3-Dimethyl-2-aryl-2,3-dihydro-1 <i>H</i> benzoimidazole Derivatives. Journal of the American Chemical Society, 2013, 135, 15018-15025.	6.6	202
185	Large-Area, Transparent, and Flexible Infrared Photodetector Fabricated Using P-N Junctions Formed by N-Doping Chemical Vapor Deposition Grown Graphene. Nano Letters, 2014, 14, 3702-3708.	4.5	201
186	Few-layer, large-area, 2D covalent organic framework semiconductor thin films. Chemical Communications, 2015, 51, 13894-13897.	2.2	201
187	Status, promises, and challenges of nanocomposite solid-state electrolytes for safe and high performance lithium batteries. Materials Today Nano, 2018, 4, 1-16.	2.3	201
188	Synthetic Routes for a 2D Semiconductive Copper Hexahydroxybenzene Metal–Organic Framework. Journal of the American Chemical Society, 2018, 140, 14533-14537.	6.6	201
189	Highly Stretchable Transistors Using a Microcracked Organic Semiconductor. Advanced Materials, 2014, 26, 4253-4259.	11.1	200
190	A Highly Stretchable and Autonomous Selfâ€Healing Polymer Based on Combination of Pt···Pt and π–π Interactions. Macromolecular Rapid Communications, 2016, 37, 1667-1675.	2.0	199
191	Soft, conformable electrical contacts for organic semiconductors: High-resolution plastic circuits by lamination. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10252-10256.	3.3	198
192	Solubility-driven thin film structures of regioregular poly(3-hexyl thiophene) using volatile solvents. Applied Physics Letters, 2007, 90, 172116.	1.5	198
193	A Stretchable Graphitic Carbon/Si Anode Enabled by Conformal Coating of a Selfâ€Healing Elastic Polymer. Advanced Materials, 2016, 28, 2455-2461.	11.1	197
194	Metallic Contact Formation for Molecular Electronics:Â Interactions between Vapor-Deposited Metals and Self-Assembled Monolayers of Conjugated Mono- and Dithiols. Langmuir, 2004, 20, 1539-1542.	1.6	194
195	Inkjet-printed stretchable and low voltage synaptic transistor array. Nature Communications, 2019, 10, 2676.	5.8	194
196	Organic oscillator and adaptive amplifier circuits for chemical vapor sensing. Journal of Applied Physics, 2002, 91, 10140.	1.1	192
197	Liquid electrolyte: The nexus of practical lithium metal batteries. Joule, 2022, 6, 588-616.	11.7	191
198	Lead candidates for high-performance organic photovoltaics from high-throughput quantum chemistry – the Harvard Clean Energy Project. Energy and Environmental Science, 2014, 7, 698-704.	15.6	189

#	Article	IF	Citations
199	Soluble Regioregular Polythiophene Derivatives as Semiconducting Materials for Field-Effect Transistors. Chemistry of Materials, 1999, 11, 2607-2612.	3.2	188
200	Designing a Quinone-Based Redox Mediator to Facilitate Li2S Oxidation in Li-S Batteries. Joule, 2019, 3, 872-884.	11.7	188
201	Controlled Conjugated Backbone Twisting for an Increased Open-Circuit Voltage while Having a High Short-Circuit Current in Poly(hexylthiophene) Derivatives. Journal of the American Chemical Society, 2012, 134, 5222-5232.	6.6	187
202	Highâ€Mobility, Aligned Crystalline Domains of TIPSâ€Pentacene with Metastable Polymorphs Through Lateral Confinement of Crystal Growth. Advanced Materials, 2014, 26, 487-493.	11.1	186
203	Material and device considerations for organic thin-film transistor sensors. Journal of Materials Chemistry, 2009, 19, 3351.	6.7	184
204	Precise Structure of Pentacene Monolayers on Amorphous Silicon Oxide and Relation to Charge Transport. Advanced Materials, 2009, 21, 2294-2298.	11.1	183
205	Capturing the swelling of solid-electrolyte interphase in lithium metal batteries. Science, 2022, 375, 66-70.	6.0	183
206	Understanding Polymorphism in Organic Semiconductor Thin Films through Nanoconfinement. Journal of the American Chemical Society, 2014, 136, 17046-17057.	6.6	179
207	Tuning the threshold voltage of carbon nanotube transistors by n-type molecular doping for robust and flexible complementary circuits. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4776-4781.	3.3	179
208	Stretchable self-healable semiconducting polymer film for active-matrix strain-sensing array. Science Advances, 2019, 5, eaav3097.	4.7	179
209	Highâ€Performance Phototransistors Based on Singleâ€Crystalline nâ€Channel Organic Nanowires and Photogenerated Chargeâ€Carrier Behaviors. Advanced Functional Materials, 2013, 23, 629-639.	7.8	177
210	Crosslinked Poly(tetrahydrofuran) as a Loosely Coordinating Polymer Electrolyte. Advanced Energy Materials, 2018, 8, 1800703.	10.2	177
211	Second Skin Enabled by Advanced Electronics. Advanced Science, 2019, 6, 1900186.	5.6	177
212	A Dynamic, Electrolyte-Blocking, and Single-Ion-Conductive Network for Stable Lithium-Metal Anodes. Joule, 2019, 3, 2761-2776.	11.7	176
213	Langmuirâ^Blodgett Films of Regioregular Poly(3-hexylthiophene) as Field-Effect Transistors. Langmuir, 2000, 16, 1834-1841.	1.6	175
214	Morphing electronics enable neuromodulation in growing tissue. Nature Biotechnology, 2020, 38, 1031-1036.	9.4	174
215	Electrolyte-gated transistors for enhanced performance bioelectronics. Nature Reviews Methods Primers, 2021, 1 , .	11.8	172
216	Manipulating the Morphology of P3HT–PCBM Bulk Heterojunction Blends with Solvent Vapor Annealing. Chemistry of Materials, 2012, 24, 3923-3931.	3.2	171

#	Article	IF	Citations
217	Printed plastic electronics and paperlike displays. Journal of Polymer Science Part A, 2002, 40, 3327-3334.	2.5	170
218	Strain-insensitive intrinsically stretchable transistors and circuits. Nature Electronics, 2021, 4, 143-150.	13.1	170
219	High-brightness all-polymer stretchable LED with charge-trapping dilution. Nature, 2022, 603, 624-630.	13.7	170
220	Stretchable Polymer Semiconductors for Plastic Electronics. Advanced Electronic Materials, 2018, 4, 1700429.	2.6	168
221	Monolithic optical microlithography of high-density elastic circuits. Science, 2021, 373, 88-94.	6.0	168
222	In Situ, Labelâ€Free DNA Detection Using Organic Transistor Sensors. Advanced Materials, 2010, 22, 4452-4456.	11.1	167
223	Polymers with Bipolar Carrier Transport Abilities for Light Emitting Diodes. Chemistry of Materials, 1998, 10, 2086-2090.	3.2	166
224	Self-assembled monolayer organic field-effect transistors. Nature, 2001, 413, 713-716.	13.7	166
225	A Highly Stretchable and Selfâ€Healing Supramolecular Elastomer Based on Sliding Crosslinks and Hydrogen Bonds. Advanced Functional Materials, 2020, 30, 1907139.	7.8	165
226	A tissue-like neurotransmitter sensor for the brain and gut. Nature, 2022, 606, 94-101.	13.7	162
227	Polymers in Lithiumâ€ion and Lithium Metal Batteries. Advanced Energy Materials, 2021, 11, 2003239.	10.2	160
228	Self-Assembly, Molecular Packing, and Electron Transport in n-Type Polymer Semiconductor Nanobelts. Chemistry of Materials, 2008, 20, 4712-4719.	3.2	159
229	Femtosecond Z-scan and degenerate four-wave mixing measurements of real and imaginary parts of the third-order nonlinearity of soluble conjugated polymers. Journal of the Optical Society of America B: Optical Physics, 1998, 15, 817.	0.9	158
230	Stretchable Lithiumâ€lon Batteries Enabled by Deviceâ€Scaled Wavy Structure and Elasticâ€Sticky Separator. Advanced Energy Materials, 2017, 7, 1701076.	10.2	158
231	Development of a reactor with carbon catalysts for modular-scale, low-cost electrochemical generation of H ₂ O ₂ . Reaction Chemistry and Engineering, 2017, 2, 239-245.	1.9	157
232	Bulky Endâ€Capped [1]Benzothieno[3,2â€ <i>b</i>]benzothiophenes: Reaching Highâ€Mobility Organic Semiconductors by Fine Tuning of the Crystalline Solidâ€State Order. Advanced Materials, 2015, 27, 3066-3072.	11.1	155
233	Suspension electrolyte with modified Li+ solvation environment for lithium metal batteries. Nature Materials, 2022, 21, 445-454.	13.3	155
234	Design and fabrication of organic complementary circuits. Journal of Applied Physics, 2001, 89, 5125-5132.	1.1	154

#	Article	IF	Citations
235	Evaluation of Solution-Processable Carbon-Based Electrodes for All-Carbon Solar Cells. ACS Nano, 2012, 6, 10384-10395.	7.3	154
236	Toward mechanically robust and intrinsically stretchable organic solar cells: Evolution of photovoltaic properties with tensile strain. Solar Energy Materials and Solar Cells, 2012, 107, 355-365.	3.0	154
237	Polymer-Assisted Direct Deposition of Uniform Carbon Nanotube Bundle Networks for High Performance Transparent Electrodes. ACS Nano, 2009, 3, 1423-1430.	7.3	153
238	Anodization and Microcontact Printing on Electroless Silver:  Solution-Based Fabrication Procedures for Low-Voltage Electronic Systems with Organic Active Components. Langmuir, 2000, 16, 6054-6060.	1.6	152
239	Removable and Recyclable Conjugated Polymers for Highly Selective and High-Yield Dispersion and Release of Low-Cost Carbon Nanotubes. Journal of the American Chemical Society, 2016, 138, 802-805.	6.6	152
240	Structural and Electrical Investigation of C ₆₀ –Graphene Vertical Heterostructures. ACS Nano, 2015, 9, 5922-5928.	7.3	151
241	Understanding the Origin of Highly Selective CO ₂ Electroreduction to CO on Ni,Nâ€doped Carbon Catalysts. Angewandte Chemie - International Edition, 2020, 59, 4043-4050.	7.2	148
242	Air-stable n-channel organic thin-film transistors with high field-effect mobility based on N,N′-bis(heptafluorobutyl)-3,4:9,10-perylene diimide. Applied Physics Letters, 2007, 91, .	1.5	147
243	Thin Film Structure of Triisopropylsilylethynylâ€Functionalized Pentacene and Tetraceno[2,3â€b]thiophene from Grazing Incidence Xâ€Ray Diffraction. Advanced Materials, 2011, 23, 127-131.	11.1	146
244	Strong and Stable Doping of Carbon Nanotubes and Graphene by MoO _{<i>x</i>} for Transparent Electrodes. Nano Letters, 2012, 12, 3574-3580.	4.5	146
245	Intrinsically stretchable conjugated polymer semiconductors in field effect transistors. Progress in Polymer Science, 2020, 100, 101181.	11.8	146
246	High-performance microscale single-crystal transistors by lithography on an elastomer dielectric. Applied Physics Letters, 2006, 89, 202108.	1.5	145
247	2-(2-Methoxyphenyl)-1,3-dimethyl-1 <i>H</i> -benzoimidazol-3-ium Iodide as a New Air-Stable n-Type Dopant for Vacuum-Processed Organic Semiconductor Thin Films. Journal of the American Chemical Society, 2012, 134, 3999-4002.	6.6	145
248	Highâ€Resolution Measurement of the Anisotropy of Charge Transport in Single Crystals. Advanced Materials, 2007, 19, 4535-4538.	11.1	144
249	Standalone real-time health monitoring patch based on a stretchable organic optoelectronic system. Science Advances, 2021, 7, .	4.7	144
250	Sorted and Aligned Single-Walled Carbon Nanotube Networks for Transistor-Based Aqueous Chemical Sensors. ACS Nano, 2009, 3, 3287-3293.	7.3	143
251	Fine-Tuning Semiconducting Polymer Self-Aggregation and Crystallinity Enables Optimal Morphology and High-Performance Printed All-Polymer Solar Cells. Journal of the American Chemical Society, 2020, 142, 392-406.	6.6	143
252	Nonphotolithographic fabrication of organic transistors with micron feature sizes. Applied Physics Letters, 1998, 72, 2716-2718.	1.5	142

#	Article	IF	Citations
253	Nanomaterials in Skin-Inspired Electronics: Toward Soft and Robust Skin-like Electronic Nanosystems. ACS Nano, 2018, 12, 11731-11739.	7.3	142
254	Gate-induced superconductivity in a solution-processed organic polymer film. Nature, 2001, 410, 189-192.	13.7	141
255	Low-voltage high-performance flexible digital and analog circuits based on ultrahigh-purity semiconducting carbon nanotubes. Nature Communications, 2019, 10, 2161.	5.8	141
256	Effective Solution―and Vacuumâ€Processed nâ€Doping by Dimers of Benzimidazoline Radicals. Advanced Materials, 2014, 26, 4268-4272.	11.1	139
257	An Electrochemical Gelation Method for Patterning Conductive PEDOT:PSS Hydrogels. Advanced Materials, 2019, 31, e1902869.	11.1	139
258	Dendritic sidegroups as three-dimensional barriers to aggregation quenching of conjugated polymer fluorescence. Synthetic Metals, 2000, 114, 61-64.	2.1	138
259	Inducing Elasticity through Oligo‧iloxane Crosslinks for Intrinsically Stretchable Semiconducting Polymers. Advanced Functional Materials, 2016, 26, 7254-7262.	7.8	138
260	High-frequency and intrinsically stretchable polymer diodes. Nature, 2021, 600, 246-252.	13.7	138
261	Hexathiapentacene:Â Structure, Molecular Packing, and Thin-Film Transistors. Journal of the American Chemical Society, 2006, 128, 15576-15577.	6.6	136
262	Side-Chain Engineering of Isoindigo-Containing Conjugated Polymers Using Polystyrene for High-Performance Bulk Heterojunction Solar Cells. Chemistry of Materials, 2013, 25, 4874-4880.	3.2	136
263	Enabling Deformable and Stretchable Batteries. Advanced Energy Materials, 2020, 10, 2001424.	10.2	136
264	Arylâ^'Perfluoroaryl Substituted Tetracene: Induction of Face-to-Face Ï€â^'Ï€ Stacking and Enhancement of Charge Carrier Properties. Chemistry of Materials, 2011, 23, 1646-1649.	3.2	135
265	Effect of Nonconjugated Spacers on Mechanical Properties of Semiconducting Polymers for Stretchable Transistors. Advanced Functional Materials, 2018, 28, 1804222.	7.8	134
266	Significant Enhancement of Infrared Photodetector Sensitivity Using a Semiconducting Singleâ€Walled Carbon Nanotube/C ₆₀ Phototransistor. Advanced Materials, 2015, 27, 759-765.	11.1	133
267	Highâ€Rate and Largeâ€Capacity Lithium Metal Anode Enabled by Volume Conformal and Selfâ€Healable Composite Polymer Electrolyte. Advanced Science, 2019, 6, 1802353.	5.6	133
268	Design Principles of Artificial Solid Electrolyte Interphases for Lithium-Metal Anodes. Cell Reports Physical Science, 2020, 1, 100119.	2.8	133
269	Synthesis and Characterization of Conjugated Mono- and Dithiol Oligomers and Characterization of Their Self-Assembled Monolayers. Langmuir, 2003, 19, 4272-4284.	1.6	132
270	Genetically targeted chemical assembly of functional materials in living cells, tissues, and animals. Science, 2020, 367, 1372-1376.	6.0	132

#	Article	IF	CITATIONS
271	Poly(phenylenevinylene)s with Dendritic Side Chains:  Synthesis, Self-Ordering, and Liquid Crystalline Properties. Macromolecules, 1998, 31, 8647-8649.	2.2	129
272	Nanoscale organic transistors that use source/drain electrodes supported by high resolution rubber stamps. Applied Physics Letters, 2003, 82, 793-795.	1.5	129
273	Highâ€Performance Transistors and Complementary Inverters Based on Solutionâ€Grown Aligned Organic Singleâ€Crystals. Advanced Materials, 2012, 24, 2588-2591.	11.1	129
274	Tuning the Dirac Point in CVD-Grown Graphene through Solution Processed n-Type Doping with 2-(2-Methoxyphenyl)-1,3-dimethyl-2,3-dihydro-1 <i>H</i>)-benzoimidazole. Nano Letters, 2013, 13, 1890-1897.	4.5	129
275	One-dimensional self-confinement promotes polymorph selection in large-area organic semiconductor thin films. Nature Communications, 2014, 5, 3573.	5.8	129
276	Tunable Polyanilineâ€Based Porous Carbon with Ultrahigh Surface Area for CO ₂ Capture at Elevated Pressure. Advanced Energy Materials, 2016, 6, 1502491.	10.2	129
277	Organic complementary ring oscillators. Applied Physics Letters, 1999, 74, 2714-2716.	1.5	128
278	Separation of Semiconducting Carbon Nanotubes for Flexible and Stretchable Electronics Using Polymer Removable Method. Accounts of Chemical Research, 2017, 50, 1096-1104.	7.6	128
279	A Dualâ€Crosslinking Design for Resilient Lithiumâ€lon Conductors. Advanced Materials, 2018, 30, e1804142.	11.1	128
280	Solvent additives and their effects on blend morphologies of bulk heterojunctions. Journal of Materials Chemistry, 2011, 21, 242-250.	6.7	127
281	Organic light-emitting diodes formed by soft contact lamination. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 429-433.	3.3	126
282	Organic Thin Film Transistors Based on Cyclohexyl-Substituted Organic Semiconductors. Chemistry of Materials, 2005, 17, 3366-3374.	3.2	125
283	Stretchable and ultraflexible organic electronics. MRS Bulletin, 2017, 42, 93-97.	1.7	125
284	Molecular Design of Stretchable Polymer Semiconductors: Current Progress and Future Directions. Journal of the American Chemical Society, 2022, 144, 4699-4715.	6.6	125
285	Corrosion of lithium metal anodes during calendar ageing and its microscopic origins. Nature Energy, 2021, 6, 487-494.	19.8	124
286	Synthesis of conjugated polymer by the Stille Coupling Reaction. Chemistry of Materials, 1993, 5, 2-3.	3.2	123
287	Largeâ€Area Assembly of Densely Aligned Singleâ€Walled Carbon Nanotubes Using Solution Shearing and Their Application to Fieldâ€Effect Transistors. Advanced Materials, 2015, 27, 2656-2662.	11.1	123
288	Dualâ€Solvent Liâ€Ion Solvation Enables Highâ€Performance Liâ€Metal Batteries. Advanced Materials, 2021, 33, e2008619.	11.1	123

#	Article	IF	CITATIONS
289	Patterning Organic Semiconductors Using "Dry―Poly(dimethylsiloxane) Elastomeric Stamps for Thin Film Transistors. Journal of the American Chemical Society, 2006, 128, 3880-3881.	6.6	121
290	Molecular parameters responsible for thermally activated transport in doped organic semiconductors. Nature Materials, 2019, 18, 242-248.	13.3	121
291	Bring on the bodyNET. Nature, 2017, 549, 328-330.	13.7	121
292	Complementary circuits with organic transistors. Applied Physics Letters, 1996, 69, 4227-4229.	1.5	120
293	An Intrinsically Stretchable Highâ€Performance Polymer Semiconductor with Low Crystallinity. Advanced Functional Materials, 2019, 29, 1905340.	7.8	120
294	Ambipolar Organic Thin Film Transistor-like Behavior of Cationic and Anionic Phthalocyanines Fabricated Using Layer-by-Layer Deposition from Aqueous Solution. Chemistry of Materials, 2003, 15, 1404-1412.	3.2	119
295	Synthesis of Polymer Dielectric Layers for Organic Thin Film Transistors via Surface-Initiated Ring-Opening Metathesis Polymerization. Journal of the American Chemical Society, 2004, 126, 4062-4063.	6.6	118
296	Scalable Synthesis of Fused Thiophene-Diketopyrrolopyrrole Semiconducting Polymers Processed from Nonchlorinated Solvents into High Performance Thin Film Transistors. Chemistry of Materials, 2013, 25, 782-789.	3.2	118
297	Skin-Inspired Electronics Enabled by Supramolecular Polymeric Materials. CCS Chemistry, 2019, 1, 431-447.	4.6	118
298	Investigation of Protein Detection Parameters Using Nanofunctionalized Organic Field-Effect Transistors. ACS Nano, 2013, 7, 3970-3980.	7.3	117
299	Integration and Response of Organic Electronics with Aqueous Microfluidics. Langmuir, 2002, 18, 5299-5302.	1.6	116
300	Morphological and Transistor Studies of Organic Molecular Semiconductors with Anisotropic Electrical Characteristics. Chemistry of Materials, 2001, 13, 1341-1348.	3.2	113
301	Solutionâ€Grown Organic Singleâ€Crystalline pâ€n Junctions with Ambipolar Charge Transport. Advanced Materials, 2013, 25, 5762-5766.	11.1	112
302	Organic single crystals: tools for the exploration of charge transport phenomena in organic materials. Journal of Materials Chemistry, 2006, 16, 329-333.	6.7	111
303	Conjugated polymer sorting of semiconducting carbon nanotubes and their electronic applications. Nano Today, 2015, 10, 737-758.	6.2	111
304	H-Bonded Supramolecular Polymer for the Selective Dispersion and Subsequent Release of Large-Diameter Semiconducting Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2015, 137, 4328-4331.	6.6	111
305	Synthesis of Acenaphthyl and Phenanthrene Based Fused-Aromatic Thienopyrazine Co-Polymers for Photovoltaic and Thin Film Transistor Applications. Chemistry of Materials, 2009, 21, 3618-3628.	3.2	109
306	Intrinsically stretchable electrode array enabled in vivo electrophysiological mapping of atrial fibrillation at cellular resolution. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14769-14778.	3.3	108

#	Article	IF	CITATIONS
307	Silsesquioxane Resins as High-Performance Solution Processible Dielectric Materials for Organic Transistor Applications. Advanced Functional Materials, 2002, 12, 526.	7.8	107
308	Microstructural origin of resistance–strain hysteresis in carbon nanotube thin film conductors. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1986-1991.	3.3	107
309	Fully stretchable active-matrix organic light-emitting electrochemical cell array. Nature Communications, 2020, 11, 3362.	5.8	106
310	Work function recovery of air exposed molybdenum oxide thin films. Applied Physics Letters, 2012, 101, 093305.	1.5	105
311	A Rapid and Facile Soft Contact Lamination Method: Evaluation of Polymer Semiconductors for Stretchable Transistors. Chemistry of Materials, 2014, 26, 4544-4551.	3.2	101
312	Highly Efficient Patterning of Organic Singleâ€Crystal Transistors from the Solution Phase. Advanced Materials, 2008, 20, 4044-4048.	11.1	100
313	Role of Polymer Structure on the Conductivity of Nâ€Doped Polymers. Advanced Electronic Materials, 2016, 2, 1600004.	2.6	99
314	Conjugated Carbon Cyclic Nanorings as Additives for Intrinsically Stretchable Semiconducting Polymers. Advanced Materials, 2019, 31, e1903912.	11.1	99
315	An Ultrastretchable and Self-Healable Nanocomposite Conductor Enabled by Autonomously Percolative Electrical Pathways. ACS Nano, 2019, 13, 6531-6539.	7.3	99
316	High Mobility Nâ€Type Transistors Based on Solutionâ€Sheared Doped 6,13â€Bis(triisopropylsilylethynyl)pentacene Thin Films. Advanced Materials, 2013, 25, 4663-4667.	11.1	97
317	Direct Patterning of Gold Nanoparticles Using Dip-Pen Nanolithography. ACS Nano, 2008, 2, 2135-2142.	7.3	96
318	Flexible, plastic transistor-based chemical sensors. Organic Electronics, 2009, 10, 377-383.	1.4	96
319	Organic smart pixels and complementary inverter circuits formed on plastic substrates by casting and rubber stamping. IEEE Electron Device Letters, 2000, 21, 100-103.	2.2	95
320	Selfâ€Assembled Monolayers of Cyclohexylâ€Terminated Phosphonic Acids as a General Dielectric Surface for Highâ€Performance Organic Thinâ€Film Transistors. Advanced Materials, 2014, 26, 7190-7196.	11.1	95
321	A design strategy for high mobility stretchable polymer semiconductors. Nature Communications, 2021, 12, 3572.	5.8	94
322	Ultrafast Spectroscopy of Even-Parity States inπ-Conjugated Polymers. Physical Review Letters, 2000, 85, 2196-2199.	2.9	93
323	Effect of Solution Shearing Method on Packing and Disorder of Organic Semiconductor Polymers. Chemistry of Materials, 2015, 27, 2350-2359.	3.2	92
324	Stretchable and Fully Degradable Semiconductors for Transient Electronics. ACS Central Science, 2019, 5, 1884-1891.	5. 3	92

#	Article	IF	Citations
325	High-Yield Sorting of Small-Diameter Carbon Nanotubes for Solar Cells and Transistors. ACS Nano, 2014, 8, 2609-2617.	7.3	91
326	Transient Voltammetry with Ultramicroelectrodes Reveals the Electron Transfer Kinetics of Lithium Metal Anodes. ACS Energy Letters, 2020, 5, 701-709.	8.8	91
327	Pentaceno [2,3-b] thiophene, a Hexacene Analogue for Organic Thin Film Transistors. Journal of the American Chemical Society, 2009, 131, 882-883.	6.6	90
328	Comparing the Device Physics and Morphology of Polymer Solar Cells Employing Fullerenes and Nonâ€Fullerene Acceptors. Advanced Energy Materials, 2014, 4, 1301426.	10.2	90
329	The Effects of Cross-Linking in a Supramolecular Binder on Cycle Life in Silicon Microparticle Anodes. ACS Applied Materials & Samp; Interfaces, 2016, 8, 2318-2324.	4.0	90
330	A bioinspired stretchable membrane-based compliance sensor. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11314-11320.	3.3	90
331	Thiol–ene Cross-Linked Polymer Gate Dielectrics for Low-Voltage Organic Thin-Film Transistors. Chemistry of Materials, 2013, 25, 4806-4812.	3.2	89
332	Effect of Nonâ€Chlorinated Mixed Solvents on Charge Transport and Morphology of Solutionâ€Processed Polymer Fieldâ€Effect Transistors. Advanced Functional Materials, 2014, 24, 3524-3534.	7.8	89
333	Effects of Molecular Structure and Packing Order on the Stretchability of Semicrystalline Conjugated Poly(Tetrathienoaceneâ€diketopyrrolopyrrole) Polymers. Advanced Electronic Materials, 2017, 3, 1600311.	2.6	89
334	Scalable and Selective Dispersion of Semiconducting Arc-Discharged Carbon Nanotubes by Dithiafulvalene/Thiophene Copolymers for Thin Film Transistors. ACS Nano, 2013, 7, 2659-2668.	7.3	88
335	Direct Uniaxial Alignment of a Donor–Acceptor Semiconducting Polymer Using Single-Step Solution Shearing. ACS Applied Materials & Shearing.	4.0	87
336	The Microbead: A 0.009 mm $<$ sup $>$ 3 $<$ /sup $>$ Implantable Wireless Neural Stimulator. IEEE Transactions on Biomedical Circuits and Systems, 2019, 13, 971-985.	2.7	87
337	Tuning the Mechanical Properties of a Polymer Semiconductor by Modulating Hydrogen Bonding Interactions. Chemistry of Materials, 2020, 32, 5700-5714.	3.2	87
338	Novel Oxadiazole Side Chain Conjugated Polymers as Single-Layer Light-Emitting Diodes with Improved Quantum Efficiencies. Chemistry of Materials, 1998, 10, 1201-1204.	3.2	86
339	Tuning the Optoelectronic Properties of Vinylene-Linked Donorâ-'Acceptor Copolymers for Organic Photovoltaics. Macromolecules, 2010, 43, 6685-6698.	2.2	86
340	Highly Tunable and Facile Synthesis of Uniform Carbon Flower Particles. Journal of the American Chemical Society, 2018, 140, 10297-10304.	6.6	86
341	Nonpolar Alkanes Modify Lithiumâ€lon Solvation for Improved Lithium Deposition and Stripping. Advanced Energy Materials, 2019, 9, 1902116.	10.2	86
342	Toward Controllable Self-assembly of Microstructures: Â Selective Functionalization and Fabrication of Patterned Spheres. Chemistry of Materials, 2002, 14, 24-26.	3.2	85

#	Article	IF	CITATIONS
343	Synthesis of Solution-Soluble Pentacene-Containing Conjugated Copolymers. Journal of the American Chemical Society, 2007, 129, 10308-10309.	6.6	85
344	Biomimetic Impact Protective Supramolecular Polymeric Materials Enabled by Quadruple H-Bonding. Journal of the American Chemical Society, 2021, 143, 1162-1170.	6.6	85
345	Interplay between Energetic and Kinetic Factors on the Ambient Stability of n-Channel Organic Transistors Based on Perylene Diimide Derivatives. Chemistry of Materials, 2009, 21, 5508-5518.	3.2	84
346	Thiophene-rich fused-aromatic thienopyrazine acceptor for donor–acceptor low band-gap polymers for OTFT and polymer solar cell applications. Journal of Materials Chemistry, 2010, 20, 5823.	6.7	84
347	Mechanistic Considerations of Bendingâ€Strain Effects within Organic Semiconductors on Polymer Dielectrics. Advanced Functional Materials, 2012, 22, 175-183.	7.8	84
348	Potentiometric Measurement to Probe Solvation Energy and Its Correlation to Lithium Battery Cyclability. Journal of the American Chemical Society, 2021, 143, 10301-10308.	6.6	83
349	Solution Assembly of Organized Carbon Nanotube Networks for Thin-Film Transistors. ACS Nano, 2009, 3, 4089-4097.	7.3	82
350	Biomaterialsâ€based organic electronic devices. Polymer International, 2010, 59, 563-567.	1.6	82
351	Highâ€Mobility Airâ€Stable Solutionâ€Shearâ€Processed nâ€Channel Organic Transistors Based on Coreâ€Chlorinated Naphthalene Diimides. Advanced Functional Materials, 2011, 21, 4173-4181.	7.8	82
352	Light-emitting electronic skin. Nature Photonics, 2013, 7, 769-771.	15.6	82
352	Light-emitting electronic skin. Nature Photonics, 2013, 7, 769-771. Deformable Organic Nanowire Fieldâ€Effect Transistors. Advanced Materials, 2018, 30, 1704401.	15.6	82
353	Deformable Organic Nanowire Fieldâ€Effect Transistors. Advanced Materials, 2018, 30, 1704401. Soft conductive micropillar electrode arrays for biologically relevant electrophysiological recording. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115,	11.1	82
353 354	Deformable Organic Nanowire Fieldâ€Effect Transistors. Advanced Materials, 2018, 30, 1704401. Soft conductive micropillar electrode arrays for biologically relevant electrophysiological recording. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11718-11723. Low-voltage 0.1 μm organic transistors and complementary inverter circuits fabricated with a	3.3	82
353 354 355	Deformable Organic Nanowire Fieldâ€Effect Transistors. Advanced Materials, 2018, 30, 1704401. Soft conductive micropillar electrode arrays for biologically relevant electrophysiological recording. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11718-11723. Low-voltage 0.1 Î⅓m organic transistors and complementary inverter circuits fabricated with a low-cost form of near-field photolithography. Applied Physics Letters, 1999, 75, 1010-1012. Effects of Odd–Even Side Chain Length of Alkyl-Substituted Diphenylbithiophenes on First Monolayer	11.1 3.3 1.5	82 82 81
353 354 355 356	Deformable Organic Nanowire Fieldâ€Effect Transistors. Advanced Materials, 2018, 30, 1704401. Soft conductive micropillar electrode arrays for biologically relevant electrophysiological recording. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11718-11723. Low-voltage 0.1 νm organic transistors and complementary inverter circuits fabricated with a low-cost form of near-field photolithography. Applied Physics Letters, 1999, 75, 1010-1012. Effects of Odd–Even Side Chain Length of Alkyl-Substituted Diphenylbithiophenes on First Monolayer Thin Film Packing Structure. Journal of the American Chemical Society, 2013, 135, 11006-11014. New indolo[3,2-b]carbazole derivatives for field-effect transistor applications. Journal of Materials	11.1 3.3 1.5 6.6	82 82 81
353 354 355 356	Deformable Organic Nanowire Fieldâ€Effect Transistors. Advanced Materials, 2018, 30, 1704401. Soft conductive micropillar electrode arrays for biologically relevant electrophysiological recording. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11718-11723. Low-voltage 0.1 ι/4m organic transistors and complementary inverter circuits fabricated with a low-cost form of near-field photolithography. Applied Physics Letters, 1999, 75, 1010-1012. Effects of Odd–Even Side Chain Length of Alkyl-Substituted Diphenylbithiophenes on First Monolayer Thin Film Packing Structure. Journal of the American Chemical Society, 2013, 135, 11006-11014. New indolo[3,2-b]carbazole derivatives for field-effect transistor applications. Journal of Materials Chemistry, 2009, 19, 2921. Taming Charge Transport in Semiconducting Polymers with Branched Alkyl Side Chains. Advanced	11.1 3.3 1.5 6.6	82 82 81 81

#	Article	IF	CITATIONS
361	Nanowire Lithography:  Fabricating Controllable Electrode Gaps Using Auâ^'Agâ^'Au Nanowires. Nano Letters, 2005, 5, 1071-1076.	4.5	78
362	Conjugated Polymer-Mediated Polymorphism of a High Performance, Small-Molecule Organic Semiconductor with Tuned Intermolecular Interactions, Enhanced Long-Range Order, and Charge Transport. Chemistry of Materials, 2013, 25, 4378-4386.	3.2	77
363	Capacitance Characterization of Elastomeric Dielectrics for Applications in Intrinsically Stretchable Thin Film Transistors. Advanced Functional Materials, 2016, 26, 4680-4686.	7.8	77
364	Printing, molding, and near-field photolithographic methods for patterning organic lasers, smart pixels and simple circuits. Synthetic Metals, 2000, 115, 5-11.	2.1	75
365	Molecular n-type doping for air-stable electron transport in vacuum-processed n-channel organic transistors. Applied Physics Letters, 2010, 97, .	1.5	75
366	A molecular design approach towards elastic and multifunctional polymer electronics. Nature Communications, 2021, 12, 5701.	5.8	75
367	Fabrication of patterned electroluminescent polymers that emit in geometries with feature sizes into the submicron range. Applied Physics Letters, 1998, 73, 294-296.	1.5	74
368	An in-plane anisotropic organic semiconductor based upon poly(3-hexyl thiophene). Thin Solid Films, 2002, 414, 143-149.	0.8	74
369	Comparison of the Photovoltaic Characteristics and Nanostructure of Fullerenes Blended with Conjugated Polymers with Siloxane-Terminated and Branched Aliphatic Side Chains. Chemistry of Materials, 2013, 25, 431-440.	3.2	74
370	Effect of morphology on organic thin film transistor sensors. Analytical and Bioanalytical Chemistry, 2005, 384, 336-342.	1.9	73
371	Induced Sensitivity and Selectivity in Thinâ€Film Transistor Sensors via Calixarene Layers. Advanced Materials, 2010, 22, 2349-2353.	11.1	73
372	Look fast: Crystallization of conjugated molecules during solution shearing probed ⟨i⟩inâ€situ⟨/i⟩ and in real time by Xâ€ray scattering. Physica Status Solidi - Rapid Research Letters, 2013, 7, 177-179.	1.2	73
373	Integrating Emerging Polymer Chemistries for the Advancement of Recyclable, Biodegradable, and Biocompatible Electronics. Advanced Science, 2021, 8, e2101233.	5.6	73
374	Field-Effect Modulation of the Conductance of Single Molecules. Science, 2001, 294, 2138-2140.	6.0	72
375	Molecular design for improved photovoltaic efficiency: band gap and absorption coefficient engineering. Journal of Materials Chemistry, 2009, 19, 7195.	6.7	72
376	The phase behavior of a polymerâ€fullerene bulk heterojunction system that contains bimolecular crystals. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 499-503.	2.4	71
377	Detailed Characterization of Contact Resistance, Gateâ€Biasâ€Dependent Fieldâ€Effect Mobility, and Shortâ€Channel Effects with Microscale Elastomeric Singleâ€Crystal Fieldâ€Effect Transistors. Advanced Functional Materials, 2009, 19, 763-771.	7.8	70
378	Controlling Electric Dipoles in Nanodielectrics and Its Applications for Enabling Air-Stable n-Channel Organic Transistors. Nano Letters, 2011, 11, 1161-1165.	4.5	70

#	Article	IF	Citations
379	Highâ€Transconductance Stretchable Transistors Achieved by Controlled Gold Microcrack Morphology. Advanced Electronic Materials, 2019, 5, 1900347.	2.6	70
380	Tuning the Cross-Linker Crystallinity of a Stretchable Polymer Semiconductor. Chemistry of Materials, 2019, 31, 6465-6475.	3.2	70
381	Correlating Molecular Structure to Field-Effect Mobility:Â The Investigation of Side-Chain Functionality in Phenyleneâr Thiophene Oligomers and Their Application in Field Effect Transistors. Chemistry of Materials, 2007, 19, 2342-2351.	3.2	69
382	Structural transitions of nanocrystalline domains in regioregular poly(3-hexyl thiophene) thin films. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 1303-1312.	2.4	69
383	Contact engineering for organic semiconductor devices via Fermi level depinning at the metal-organic interface. Physical Review B, 2010, 82, .	1.1	69
384	Fabrication and Evaluation of Solution-Processed Reduced Graphene Oxide Electrodes for p- and n-Channel Bottom-Contact Organic Thin-Film Transistors. ACS Nano, 2010, 4, 6343-6352.	7.3	69
385	Solvent Effects on Polymer Sorting of Carbon Nanotubes with Applications in Printed Electronics. Small, 2015, 11, 126-133.	5.2	69
386	All-Polymer Solar Cells Employing Non-Halogenated Solvent and Additive. Chemistry of Materials, 2016, 28, 5037-5042.	3.2	69
387	Solid-state droplet laser made from an organic blend with a conjugated polymer emitter. Advanced Materials, 1997, 9, 968-971.	11.1	68
388	Solution-Shear-Processed Quaterrylene Diimide Thin-Film Transistors Prepared by Pressure-Assisted Thermal Cleavage of Swallow Tails. Journal of the American Chemical Society, 2011, 133, 4204-4207.	6.6	68
389	Pentacene Based Organic Thin Film Transistors as the Transducer for Biochemical Sensing in Aqueous Media. Chemistry of Materials, 2011, 23, 1946-1953.	3.2	68
390	Nonhalogenated Solvent Processable and Printable High-Performance Polymer Semiconductor Enabled by Isomeric Nonconjugated Flexible Linkers. Macromolecules, 2018, 51, 4976-4985.	2.2	68
391	Flicker noise properties of organic thin-film transistors. Journal of Applied Physics, 2000, 87, 3381-3385.	1.1	67
392	Synthesis, Characterization, and Fieldâ€Effect Transistor Performance of Pentacene Derivatives. Advanced Materials, 2007, 19, 3381-3384.	11.1	67
393	3,4-Disubstituted Polyalkylthiophenes for High-Performance Thin-Film Transistors and Photovoltaics. Journal of the American Chemical Society, 2011, 133, 16722-16725.	6.6	67
394	Polymer Chemistries Underpinning Materials for Skin-Inspired Electronics. Macromolecules, 2019, 52, 3965-3974.	2.2	67
395	Ink Development and Printing of Conducting Polymers for Intrinsically Stretchable Interconnects and Circuits. Advanced Electronic Materials, 2020, 6, 1900681.	2.6	67
396	A Nickelâ€Decorated Carbon Flower/Sulfur Cathode for Leanâ€Electrolyte Lithium–Sulfur Batteries. Advanced Energy Materials, 2021, 11, 2101449.	10.2	67

#	Article	IF	Citations
397	Trialkylsilylethynyl-Functionalized Tetraceno[2,3- <i>b</i>)thiophene and Anthra[2,3- <i>b</i>)thiophene Organic Transistors. Chemistry of Materials, 2008, 20, 4669-4676.	3.2	66
398	Transistor and solar cell performance of donor–acceptor low bandgap copolymers bearing an acenaphtho[1,2-b]thieno[3,4-e]pyrazine (ACTP) motif. Journal of Materials Chemistry, 2009, 19, 591-593.	6.7	66
399	Significance of the double-layer capacitor effect in polar rubbery dielectrics and exceptionally stable low-voltage high transconductance organic transistors. Scientific Reports, 2015, 5, 17849.	1.6	66
400	High-performance oxygen reduction and evolution carbon catalysis: From mechanistic studies to device integration. Nano Research, 2017, 10, 1163-1177.	5.8	66
401	All-Solid-State Lithium–Sulfur Batteries Enhanced by Redox Mediators. Journal of the American Chemical Society, 2021, 143, 18188-18195.	6.6	66
402	Thin Film Structure of Tetraceno [2,3- <i>b</i>]thiophene Characterized by Grazing Incidence X-ray Scattering and Near-Edge X-ray Absorption Fine Structure Analysis. Journal of the American Chemical Society, 2008, 130, 3502-3508.	6.6	65
403	Nonâ€Conjugated Flexible Linkers in Semiconducting Polymers: A Pathway to Improved Processability without Compromising Device Performance. Advanced Electronic Materials, 2016, 2, 1600104.	2.6	65
404	A Cation-Tethered Flowable Polymeric Interface for Enabling Stable Deposition of Metallic Lithium. Journal of the American Chemical Society, 2020, 142, 21393-21403.	6.6	65
405	Designing Tunable Capacitive Pressure Sensors Based on Material Properties and Microstructure Geometry. ACS Applied Materials & Interfaces, 2020, 12, 58301-58316.	4.0	65
406	A Design Strategy for Intrinsically Stretchable High-Performance Polymer Semiconductors: Incorporating Conjugated Rigid Fused-Rings with Bulky Side Groups. Journal of the American Chemical Society, 2021, 143, 11679-11689.	6.6	65
407	Influence of Molecular Structure and Film Properties on the Water-Stability and Sensor Characteristics of Organic Transistors. Chemistry of Materials, 2008, 20, 7332-7338.	3.2	64
408	High-Performance Organic Semiconductors Based on Fluorene–PhenyleneÂOligomers with High Ionization Potentials. Advanced Materials, 2006, 18, 2989-2992.	11.1	63
409	VLSI-Compatible Carbon Nanotube Doping Technique with Low Work-Function Metal Oxides. Nano Letters, 2014, 14, 1884-1890.	4.5	63
410	Skin-inspired electronics: emerging semiconductor devices and systems. Journal of Semiconductors, 2020, 41, 041601.	2.0	63
411	Solution-Assisted Assembly of Organic Semiconducting Single Crystals on Surfaces with Patterned Wettability. Langmuir, 2007, 23, 7428-7432.	1.6	62
412	Large-area formation of self-aligned crystalline domains of organic semiconductors on transistor channels using CONNECT. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5561-5566.	3.3	62
413	Thienoacene dimers based on the thieno[3,2-b]thiophene moiety: synthesis, characterization and electronic properties. Journal of Materials Chemistry C, 2015, 3, 674-685.	2.7	62
414	Highly Effective Separation of Semiconducting Carbon Nanotubes verified <i>via</i> Short-Channel Devices Fabricated Using Dip-Pen Nanolithography. ACS Nano, 2012, 6, 2487-2496.	7.3	61

#	Article	lF	Citations
415	Enhancement in open circuit voltage through a cascade-type energy band structure. Applied Physics Letters, 2007, 91, 223508.	1.5	60
416	Selective Nucleation of Organic Single Crystals from Vapor Phase on Nanoscopically Rough Surfaces. Advanced Functional Materials, 2007, 17, 3545-3553.	7.8	60
417	Organic Transistors with Ordered Nanoparticle Arrays as a Tailorable Platform for Selective, <i>In Situ</i> Detection. ACS Nano, 2012, 6, 3100-3108.	7.3	60
418	Advancing models of neural development with biomaterials. Nature Reviews Neuroscience, 2021, 22, 593-615.	4.9	60
419	Large photorefractivity in an exceptionally thermostable multifunctional polyimide. Journal of the American Chemical Society, 1994, 116, 6003-6004.	6.6	59
420	Synthesis and characterization of soluble indolo[3,2-b]carbazole derivatives for organic field-effect transistors. Organic Electronics, 2010, 11, 1649-1659.	1.4	59
421	Tuning the Morphology of Solution-Sheared P3HT:PCBM Films. ACS Applied Materials & Distribution (1997) and the Morphology of Solution-Sheared P3HT:PCBM Films. ACS Applied Materials & Distribution (1997) and the Morphology of Solution-Sheared P3HT:PCBM Films. ACS Applied Materials & Distribution (1997) and the Morphology of Solution-Sheared P3HT:PCBM Films. ACS Applied Materials & Distribution (1997) and the Morphology of Solution-Sheared P3HT:PCBM Films. ACS Applied Materials & Distribution (1997) and the Morphology of Solution (1997) and the Morphology of S	4.0	59
422	Resonators and materials for organic lasers based on energy transfer. IEEE Journal of Selected Topics in Quantum Electronics, 1998, 4, 67-74.	1.9	58
423	Synthesis and Characterization of Pentaceneâ^ and Anthradithiopheneâ^ Fluorene Conjugated Copolymers Synthesized by Suzuki Reactions. Macromolecules, 2008, 41, 6977-6980.	2.2	58
424	Partially-Screened Field Effect and Selective Carrier Injection at Organic Semiconductor/Graphene Heterointerface. Nano Letters, 2015, 15, 7587-7595.	4.5	58
425	nâ€Type Doped Conjugated Polymer for Nonvolatile Memory. Advanced Materials, 2017, 29, 1605166.	11.1	58
426	Strain- and Strain-Rate-Invariant Conductance in a Stretchable and Compressible 3D Conducting Polymer Foam. Matter, 2019, 1, 205-218.	5.0	58
427	Toward high-mobility organic field-effect transistors: Control of molecular packing and large-area fabrication of single-crystal-based devices. MRS Bulletin, 2013, 38, 34-42.	1.7	57
428	Flexible Fringe Effect Capacitive Sensors with Simultaneous Highâ€Performance Contact and Nonâ€Contact Sensing Capabilities. Small Structures, 2021, 2, 2000079.	6.9	57
429	Sequentially solution-processed, nanostructured polymer photovoltaics using selective solvents. Energy and Environmental Science, 2014, 7, 1103.	15.6	56
430	Lyotropic Liquidâ€Crystalline Solutions of Highâ€Concentration Dispersions of Singleâ€Walled Carbon Nanotubes with Conjugated Polymers. Small, 2009, 5, 1019-1024.	5.2	55
431	Photorefractive polymers. 2. Structure design and property characterization. Macromolecules, 1993, 26, 2216-2221.	2.2	54
432	Single- and Multigrain Nanojunctions with a Self-Assembled Monolayer of Conjugated Molecules. Physical Review Letters, 2004, 92, 186805.	2.9	54

#	Article	IF	Citations
433	Optimizing the Thin Film Morphology of Organic Fieldâ€Effect Transistors: The Influence of Molecular Structure and Vacuum Deposition Parameters on Device Performance. Journal of Macromolecular Science - Reviews in Macromolecular Chemistry and Physics, 2006, 46, 79-101.	2.2	54
434	Copper hexafluorophthalocyanine field-effect transistors with enhanced mobility by soft contact lamination. Organic Electronics, 2006, 7, 568-575.	1.4	54
435	Effect of Surface Chemistry on Electronic Properties of Carbon Nanotube Network Thin Film Transistors. ACS Nano, 2010, 4, 6137-6145.	7.3	54
436	Recent advances in flexible and stretchable electronics, sensors and power sources. Science China Chemistry, 2012, 55, 718-725.	4.2	54
437	Semiconducting Carbon Nanotubes for Improved Efficiency and Thermal Stability of Polymer–Fullerene Solar Cells. Advanced Functional Materials, 2016, 26, 51-65.	7.8	54
438	Characterization of Hydrogen Bonding Formation and Breaking in Semiconducting Polymers under Mechanical Strain. Macromolecules, 2019, 52, 2476-2486.	2.2	54
439	F4‶CNQ as an Additive to Impart Stretchable Semiconductors with High Mobility and Stability. Advanced Electronic Materials, 2020, 6, 2000251.	2.6	54
440	Probing the Anisotropic Field-Effect Mobility of Solution-Deposited Dicyclohexyl-α-quaterthiophene Single Crystals. Advanced Functional Materials, 2007, 17, 1617-1622.	7.8	53
441	Highly Stable Carbon Nanotube Topâ€Gate Transistors with Tunable Threshold Voltage. Advanced Materials, 2014, 26, 4588-4593.	11.1	53
442	Epitaxially Grown Strained Pentacene Thin Film on Graphene Membrane. Small, 2015, 11, 2037-2043.	5.2	53
443	Skin-inspired organic electronic materials and devices. MRS Bulletin, 2016, 41, 897-904.	1.7	53
444	Nanoscale Domain Imaging of All-Polymer Organic Solar Cells by Photo-Induced Force Microscopy. ACS Nano, 2018, 12, 1473-1481.	7.3	53
445	New Metalloporphyrin Containing Polymers from the Heck Coupling Reaction. Macromolecules, 1994, 27, 4629-4631.	2.2	52
446	Ultrafast Electron Transfer at Organic Semiconductor Interfaces: Importance of Molecular Orientation. Journal of Physical Chemistry Letters, 2015, 6, 6-12.	2.1	52
447	Chemical Vapor-Deposited Hexagonal Boron Nitride as a Scalable Template for High-Performance Organic Field-Effect Transistors. Chemistry of Materials, 2017, 29, 2341-2347.	3.2	52
448	Investigating Limiting Factors in Stretchable All-Carbon Transistors for Reliable Stretchable Electronics. ACS Nano, 2017, 11, 7925-7937.	7.3	52
449	Tuning Crystalline Solidâ€State Order and Charge Transport via Buildingâ€Block Modification of Oligothiophenes. Advanced Materials, 2009, 21, 3678-3681.	11.1	51
450	Influence of Electrostatic Interactions on Spin-Assembled Single-Walled Carbon Nanotube Networks on Amine-Functionalized Surfaces. ACS Nano, 2010, 4, 1167-1177.	7.3	51

#	Article	IF	Citations
451	Fabrication of flexible pressure sensors with microstructured polydimethylsiloxane dielectrics using the breath figures method. Journal of Materials Research, 2015, 30, 3584-3594.	1.2	51
452	Combinatorial Study of Temperatureâ€Dependent Nanostructure and Electrical Conduction of Polymer Semiconductors: Even Bimodal Orientation Can Enhance 3D Charge Transport. Advanced Functional Materials, 2016, 26, 4627-4634.	7.8	51
453	Biodegradable and stretchable polymeric materials for transient electronic devices. MRS Bulletin, 2020, 45, 96-102.	1.7	51
454	Direct Patterning of Organicâ€Thinâ€Filmâ€Transistor Arrays via a "Dryâ€Taping―Approach. Advanced Materials, 2009, 21, 1266-1270.	11.1	50
455	Wafer-Scale Fabrication and Characterization of Thin-Film Transistors with Polythiophene-Sorted Semiconducting Carbon Nanotube Networks. ACS Nano, 2012, 6, 451-458.	7.3	50
456	Assembly and Alignment of Metallic Nanorods on Surfaces with Patterned Wettability. Small, 2006, 2, 1448-1453.	5.2	49
457	Complementary inverter using high mobility air-stable perylene di-imide derivatives. Applied Physics Letters, 2007, 90, 093508.	1.5	49
458	Anthradithiophene-Containing Copolymers for Thin-Film Transistors and Photovoltaic Cells. Macromolecules, 2010, 43, 6361-6367.	2.2	49
459	Dendrite Suppression by a Polymer Coating: A Coarseâ€Grained Molecular Study. Advanced Functional Materials, 2020, 30, 1910138.	7.8	49
460	Understanding the Origin of Highly Selective CO ₂ Electroreduction to CO on Ni,Nâ€doped Carbon Catalysts. Angewandte Chemie, 2020, 132, 4072-4079.	1.6	48
461	Air-Stability and Carrier Type in Conductive M ₃ (Hexaaminobenzene) _{2,} (M = Co,) Tj ETC	Qq1.1 0.78	34314 rgBT
462	Bimetallic Nanocatalysts Immobilized in Nanoporous Hydrogels for Longâ€Term Robust Continuous Glucose Monitoring of Smart Contact Lens. Advanced Materials, 2022, 34, e2110536.	11.1	48
463	Nanotubes on Display: How Carbon Nanotubes Can Be Integrated into Electronic Displays. ACS Nano, 2010, 4, 2975-2978.	7.3	47
464	Direct growth of aligned graphitic nanoribbons from a DNA template by chemical vapour deposition. Nature Communications, 2013, 4, 2402.	5.8	47
465	Diketopyrrolopyrrole (DPP)â€Based Donor–Acceptor Polymers for Selective Dispersion of Largeâ€Diameter Semiconducting Carbon Nanotubes. Small, 2015, 11, 2946-2954.	5. 2	47
466	Electric Field Tuning Molecular Packing and Electrical Properties of Solutionâ€Shearing Coated Organic Semiconducting Thin Films. Advanced Functional Materials, 2017, 27, 1605503.	7.8	47
467	Universal Selective Dispersion of Semiconducting Carbon Nanotubes from Commercial Sources Using a Supramolecular Polymer. ACS Nano, 2017, 11, 5660-5669.	7.3	47
468	Conjugated Polymer for Implantable Electronics toward Clinical Application. Advanced Healthcare Materials, 2021, 10, e2001916.	3.9	47

#	Article	IF	CITATIONS
469	Tuning Conjugated Polymer Chain Packing for Stretchable Semiconductors. Advanced Materials, 2022, 34, e2104747.	11.1	47
470	Ion-modulated ambipolar electrical conduction in thin-film transistors based on amorphous conjugated polymers. Applied Physics Letters, 2001, 78, 228-230.	1.5	46
471	TIPS-pentacene crystalline thin film growth. Organic Electronics, 2012, 13, 2056-2062.	1.4	46
472	Tuning the Self-Healing Response of Poly(dimethylsiloxane)-Based Elastomers. ACS Applied Polymer Materials, 2020, 2, 4127-4139.	2.0	46
473	Direct Characterization of Atomically Dispersed Catalysts: Nitrogenâ€Coordinated Ni Sites in Carbonâ€Based Materials for CO ₂ Electroreduction. Advanced Energy Materials, 2020, 10, 2001836.	10.2	46
474	Understanding the Mechanism of High Capacitance in Nickel Hexaaminobenzene-Based Conductive Metal–Organic Frameworks in Aqueous Electrolytes. ACS Nano, 2020, 14, 15919-15925.	7.3	46
475	Efficient Lithium Metal Cycling over a Wide Range of Pressures from an Anion-Derived Solid-Electrolyte Interphase Framework. ACS Energy Letters, 2021, 6, 816-825.	8.8	46
476	An X-ray Photoelectron Spectroscopy Primer for Solid Electrolyte Interphase Characterization in Lithium Metal Anodes. ACS Energy Letters, 2022, 7, 2540-2546.	8.8	46
477	Conjugated polymers exhibiting liquid crystallinity. Advanced Materials, 1994, 6, 156-159.	11.1	45
478	Tradeâ€Off between Trap Filling, Trap Creation, and Charge Recombination Results in Performance Increase at Ultralow Doping Levels in Bulk Heterojunction Solar Cells. Advanced Energy Materials, 2016, 6, 1601149.	10.2	45
479	Roadmap on semiconductor–cell biointerfaces. Physical Biology, 2018, 15, 031002.	0.8	45
480	Enhancing the connection between computation and experiments in electrocatalysis. Nature Catalysis, 2022, 5, 374-381.	16.1	45
481	X-ray Microscopy Imaging of the Grain Orientation in a Pentacene Field-Effect Transistor. Chemistry of Materials, 2010, 22, 3693-3697.	3.2	44
482	Disassociation and Reformation Under Strain in Polymer with Dynamic Metal–Ligand Coordination Cross-Linking. Macromolecules, 2019, 52, 660-668.	2.2	44
483	Ultraâ€Compliant and Tough Thermochromic Polymer for Selfâ€Regulated Smart Windows. Advanced Functional Materials, 2021, 31, 2100686.	7.8	44
484	Chemical Modifications of Ag Catalyst Surfaces with Imidazolium Ionomers Modulate H ₂ Evolution Rates during Electrochemical CO ₂ Reduction. Journal of the American Chemical Society, 2021, 143, 14712-14725.	6.6	44
485	Self-Sorted Nanotube Networks on Polymer Dielectrics for Low-Voltage Thin-Film Transistors. Nano Letters, 2009, 9, 2526-2531.	4.5	43
486	Band structure measurement of organic single crystal with angle-resolved photoemission. Applied Physics Letters, 2010, 96, 222106.	1.5	43

#	Article	IF	Citations
487	A simple droplet pinning method for polymer film deposition for measuring charge transport in a thin film transistor. Organic Electronics, 2012, 13, 2450-2460.	1.4	43
488	Using in-Situ Polymerization of Conductive Polymers to Enhance the Electrical Properties of Solution-Processed Carbon Nanotube Films and Fibers. ACS Applied Materials & Samp; Interfaces, 2014, 6, 9966-9974.	4.0	43
489	Wearable Bioelectronics: Opportunities for Chemistry. Accounts of Chemical Research, 2019, 52, 521-522.	7.6	43
490	High Energy Density Shape Memory Polymers Using Strain-Induced Supramolecular Nanostructures. ACS Central Science, 2021, 7, 1657-1667.	5.3	43
491	Reprocessable and Recyclable Polymer Network Electrolytes via Incorporation of Dynamic Covalent Bonds. Chemistry of Materials, 2022, 34, 2393-2399.	3.2	43
492	Excited-state relaxation in π-conjugated polymers. Physical Review B, 2002, 65, .	1.1	42
493	An ultra-narrow bandgap derived from thienoisoindigo polymers: structural influence on reducing the bandgap and self-organization. Polymer Chemistry, 2016, 7, 1181-1190.	1.9	42
494	Modular and Reconfigurable Stretchable Electronic Systems. Advanced Materials Technologies, 2019, 4, 1800417.	3.0	42
495	Synthesis and characterization of a thermally curable second-order nonlinear optical polymer. Macromolecules, 1992, 25, 5609-5612.	2.2	41
496	Non-destructive probing of the anisotropy of field-effect mobility in the rubrene single crystal. Synthetic Metals, 2007, 157, 257-260.	2.1	41
497	Electronic Readout Enzymeâ€Linked Immunosorbent Assay with Organic Fieldâ€Effect Transistors as a Preeclampsia Prognostic. Advanced Materials, 2014, 26, 6138-6144.	11.1	41
498	Two-Dimensional Conductive Ni-HAB as a Catalyst for the Electrochemical Oxygen Reduction Reaction. ACS Applied Materials & Samp; Interfaces, 2020, 12, 39074-39081.	4.0	41
499	Polarized Electroluminescence from Aligned Chromophores by the Friction Transfer Method. Advanced Materials, 2000, 12, 344-347.	11.1	40
500	Structure Property Relationships:  Asymmetric Oligofluoreneâ^'Thiophene Molecules for Organic TFTs. Chemistry of Materials, 2006, 18, 6250-6257.	3.2	40
501	Selective Crystallization of Organic Semiconductors on Patterned Templates of Carbon Nanotubes. Advanced Functional Materials, 2007, 17, 2891-2896.	7.8	40
502	Stretching our imagination. Nature Nanotechnology, 2008, 3, 585-586.	15.6	40
503	Adding new functions to organic semiconductor nanowires by assembling metal nanoparticles onto their surfaces. Journal of Materials Chemistry, 2008, 18, 5395.	6.7	40
504	Inducing Molecular Aggregation of Polymer Semiconductors in a Secondary Insulating Polymer Matrix to Enhance Charge Transport. Chemistry of Materials, 2020, 32, 897-905.	3.2	40

#	Article	IF	Citations
505	High Thermopower in a Zn-Based 3D Semiconductive Metal–Organic Framework. Journal of the American Chemical Society, 2020, 142, 20531-20535.	6.6	40
506	Valence-Dependent Electrical Conductivity in a 3D Tetrahydroxyquinone-Based Metal–Organic Framework. Journal of the American Chemical Society, 2020, 142, 21243-21248.	6.6	39
507	Fine printing. Nature Materials, 2004, 3, 137-138.	13.3	38
508	Structure and Bonding Issues at the Interface between Gold and Self-Assembled Conjugated Dithiol Monolayers. Langmuir, 2005, 21, 8751-8757.	1.6	38
509	Air-stable n-channel copper hexachlorophthalocyanine for field-effect transistors. Applied Physics Letters, 2006, 89, 163516.	1.5	38
510	Solution deposited liquid crystalline semiconductors on a photoalignment layer for organic thin-film transistors. Applied Physics Letters, 2007, 90, 232108.	1.5	38
511	Fused aromatic thienopyrazines: structure, properties and function. Journal of Materials Chemistry, 2010, 20, 10568.	6.7	38
512	Functionalized Asymmetric Linear Acenes for Highâ€Performance Organic Semiconductors. Advanced Functional Materials, 2008, 18, 1579-1585.	7.8	37
513	Solution-processed flexible organic transistors showing very-low subthreshold slope with a bilayer polymeric dielectric on plastic. Applied Physics Letters, 2009, 94, 203301.	1.5	37
514	Effects of Dispersion Conditions of Single-Walled Carbon Nanotubes on the Electrical Characteristics of Thin Film Network Transistors. ACS Applied Materials & (2010, 2, 2672-2678.)	4.0	37
515	Ultraâ€Smooth and Ultraâ€Strong Ionâ€Exchanged Glass as Substrates for Organic Electronics. Advanced Functional Materials, 2013, 23, 3233-3238.	7.8	37
516	Organic single-crystal complementary inverter. Applied Physics Letters, 2006, 89, 222111.	1.5	36
517	Dualâ€Gate Organic Fieldâ€Effect Transistor for pH Sensors with Tunable Sensitivity. Advanced Electronic Materials, 2019, 5, 1800381.	2.6	36
518	Conjugated, Liquid Crystalline Polymers. Angewandte Chemie International Edition in English, 1993, 32, 1345-1347.	4.4	35
519	Microstructure of Oligofluorene Asymmetric Derivatives in Organic Thin Film Transistors. Chemistry of Materials, 2008, 20, 2763-2772.	3.2	35
520	Dispersion of Highâ€Purity Semiconducting Arcâ€Discharged Carbon Nanotubes Using Backbone Engineered Diketopyrrolopyrrole (DPP)â€Based Polymers. Advanced Electronic Materials, 2016, 2, 1500299.	2.6	35
521	Compact Roll-to-Roll Coater for in Situ X-ray Diffraction Characterization of Organic Electronics Printing. ACS Applied Materials & Samp; Interfaces, 2016, 8, 1687-1694.	4.0	35
522	Experimental Study and Statistical Analysis of Solution-Shearing Processed Organic Transistors Based on an Asymmetric Small-Molecule Semiconductor. IEEE Transactions on Electron Devices, 2009, 56, 176-185.	1.6	34

#	Article	IF	Citations
523	Syntheses of Organic Moleculeâ^'DNA Hybrid Structures. ACS Nano, 2011, 5, 2067-2074.	7.3	34
524	Fabrication of organic semiconductor crystalline thin films and crystals from solution by confined crystallization. Organic Electronics, 2012, 13, 235-243.	1.4	34
525	Dip-Pen Nanolithography of Electrical Contacts to Single-Walled Carbon Nanotubes. ACS Nano, 2009, 3, 3543-3551.	7.3	33
526	Multivalent Assembly of Flexible Polymer Chains into Supramolecular Nanofibers. Journal of the American Chemical Society, 2020, 142, 16814-16824.	6.6	33
527	Regiospecific, Functionalized Poly(phenylenevinylene) Using the Heck Coupling Reaction. Macromolecules, 1995, 28, 5151-5153.	2.2	32
528	Shapeâ€Controlled, Selfâ€Wrapped Carbon Nanotube 3D Electronics. Advanced Science, 2015, 2, 1500103.	5.6	32
529	Nâ€Type Conjugated Polymerâ€Enabled Selective Dispersion of Semiconducting Carbon Nanotubes for Flexible CMOSâ€Like Circuits. Advanced Functional Materials, 2015, 25, 1837-1844.	7.8	32
530	Achieving High Thermoelectric Performance and Metallic Transport in Solventâ€Sheared PEDOT:PSS. Advanced Electronic Materials, 2021, 7, 2001190.	2.6	32
531	Transistor performance of top rough surface of pentacene measured by laminated double insulated-gate supported on a poly(dimethylsiloxanes) base structure. Applied Physics Letters, 2006, 88, 033502.	1.5	31
532	Organic semiconductor-carbon nanotube bundle bilayer field effect transistors with enhanced mobilities and high on/off ratios. Applied Physics Letters, 2008, 92, .	1.5	31
533	nâ€Dopants Based on Dimers of Benzimidazoline Radicals: Structures and Mechanism of Redox Reactions. Chemistry - A European Journal, 2015, 21, 10878-10885.	1.7	31
534	Thermally curable secondâ€order nonlinearâ€optical polymer. Applied Physics Letters, 1992, 60, 1655-1657.	1.5	30
535	Driving Highâ€Performance n―and pâ€ŧype Organic Transistors with Carbon Nanotube/Conjugated Polymer Composite Electrodes Patterned Directly from Solution. Advanced Materials, 2010, 22, 4204-4208.	11.1	30
536	Side chain engineering of fused aromatic thienopyrazine based low band-gap polymers for enhanced charge carrier mobility. Journal of Materials Chemistry, 2011, 21, 1537-1543.	6.7	30
537	Impact of Polystyrene Oligomer Side Chains on Naphthalene Diimide–Bithiophene Polymers as nâ€Type Semiconductors for Organic Fieldâ€Effect Transistors. Advanced Functional Materials, 2016, 26, 1261-1270.	7.8	30
538	Intrinsically Stretchable Temperature Sensor Based on Organic Thin-Film Transistors. IEEE Electron Device Letters, 2019, 40, 1630-1633.	2.2	30
539	Metal–Ligand Based Mechanophores Enhance Both Mechanical Robustness and Electronic Performance of Polymer Semiconductors. Advanced Functional Materials, 2021, 31, 2009201.	7.8	30
540	Effects of Polymer Coating Mechanics at Solidâ€Electrolyte Interphase for Stabilizing Lithium Metal Anodes. Advanced Energy Materials, 2022, 12, .	10.2	30

#	Article	IF	CITATIONS
541	12.3: Flexible, Active-Matrix Display Constructed Using a Microencapsulated Electrophoretic Material and an Organic-Semiconductor-Based Backplane. Digest of Technical Papers SID International Symposium, 2001, 32, 160.	0.1	29
542	Overestimation of the field-effect mobility via transconductance measurements and the origin of the output/transfer characteristic discrepancy in organic field-effect transistors. Journal of Applied Physics, 2009, 105, .	1.1	29
543	In Situ Hetero Endâ€Functionalized Polythiophene and Subsequent "Click―Chemistry With DNA. Macromolecular Rapid Communications, 2012, 33, 938-942.	2.0	29
544	The effect of pH and DNA concentration on organic thin-film transistor biosensors. Organic Electronics, 2012, 13, 519-524.	1.4	29
545	Tuning Local Molecular Orientation–Composition Correlations in Binary Organic Thin Films by Solution Shearing. Advanced Functional Materials, 2015, 25, 3131-3137.	7.8	29
546	The effects of counter anions on the dynamic mechanical response in polymer networks crosslinked by metal–ligand coordination. Journal of Polymer Science Part A, 2017, 55, 3110-3116.	2.5	29
547	Impact of Molecular Design on Degradation Lifetimes of Degradable Imine-Based Semiconducting Polymers. Journal of the American Chemical Society, 2022, 144, 3717-3726.	6.6	29
548	Organic lasers based on Förster transfer. Synthetic Metals, 1997, 91, 65-68.	2.1	28
549	Polymer light emitting diodes: new materials and devices. Optical Materials, 1999, 12, 177-182.	1.7	28
550	Control of topography, stress and diffusion at molecule–metal interfaces. Nanotechnology, 2006, 17, 1272-1277.	1.3	28
551	Patterning of $\hat{l}\pm$ -Sexithiophene Single Crystals with Precisely Controlled Sizes and Shapes. Chemistry of Materials, 2009, 21, 15-17.	3.2	28
552	A comparison of two air-stable molecular n-dopants for C60. Organic Electronics, 2012, 13, 3319-3325.	1.4	28
553	Analyzing the n-Doping Mechanism of an Air-Stable Small-Molecule Precursor. ACS Applied Materials & Lamp; Interfaces, 2018, 10, 1340-1346.	4.0	28
554	Synthesis of DNAâ^'Organic Moleculeâ^'DNA Triblock Oligomers Using the Amide Coupling Reaction and Their Enzymatic Amplification. Journal of the American Chemical Society, 2008, 130, 12854-12855.	6.6	27
555	A Cell-Compatible Conductive Film from a Carbon Nanotube Network Adsorbed on Poly- <scp>I</scp> -lysine. ACS Nano, 2011, 5, 10026-10032.	7.3	27
556	The Largeâ€Area, Solutionâ€Based Deposition of Singleâ€Crystal Organic Semiconductors. Israel Journal of Chemistry, 2014, 54, 496-512.	1.0	27
557	Probing the interfacial molecular packing in TIPS-pentacene organic semiconductors by surface enhanced Raman scattering. Journal of Materials Chemistry C, 2014, 2, 2985-2991.	2.7	27
558	Enhancing Molecular Alignment and Charge Transport of Solutionâ€Sheared Semiconducting Polymer Films by the Electricalâ€Blade Effect. Advanced Electronic Materials, 2018, 4, 1800110.	2.6	27

#	Article	IF	Citations
559	Conducting Polymerâ∈Based Granular Hydrogels for Injectable 3D Cell Scaffolds. Advanced Materials Technologies, 2021, 6, 2100162.	3.0	27
560	Electron Transport in Fluorinated Copper-Phthalocyanine. Advanced Materials, 2000, 12, 1539-1542.	11.1	26
561	Tunable Thin-Film Crystalline Structures and Field-Effect Mobility of Oligofluorene–Thiophene Derivatives. Chemistry of Materials, 2007, 19, 5882-5889.	3.2	26
562	Large-Scale Production of Graphene Nanoribbons from Electrospun Polymers. Journal of the American Chemical Society, 2014, 136, 17284-17291.	6.6	26
563	Electronic biosensing with flexible organic transistor devices. Flexible and Printed Electronics, 2018, 3, 034003.	1.5	26
564	Low-Voltage, Dual-Gate Organic Transistors with High Sensitivity and Stability toward Electrostatic Biosensing. ACS Applied Materials & Samp; Interfaces, 2020, 12, 40581-40589.	4.0	26
565	Gated molecular devices using self-assembled monolayers. Nanotechnology, 2003, 14, 254-257.	1.3	25
566	Carrier mobility in pentacene as a function of grain size and orientation derived from scanning transmission X-ray microscopy. Organic Electronics, 2011, 12, 1936-1942.	1.4	25
567	Efficient metallic carbon nanotube removal for highly-scaled technologies. , 2015, , .		25
568	Thickness Dependence of Microstructure in Semiconducting Films of an Oligofluorene Derivative. Journal of the American Chemical Society, 2006, 128, 16579-16586.	6.6	24
569	Aging Susceptibility of Terrace-Like Pentacene Films. Journal of Physical Chemistry C, 2008, 112, 16161-16165.	1.5	24
570	Investigation of a Solution-Processable, Nonspecific Surface Modifier for Low Cost, High Work Function Electrodes. ACS Applied Materials & Samp; Interfaces, 2016, 8, 19658-19664.	4.0	24
571	Solution-Phase Conformation and Dynamics of Conjugated Isoindigo-Based Donor–Acceptor Polymer Single Chains. Journal of Physical Chemistry Letters, 2017, 8, 5479-5486.	2.1	24
572	Electronic Skin: Electronic Skin: Recent Progress and Future Prospects for Skinâ€Attachable Devices for Health Monitoring, Robotics, and Prosthetics (Adv. Mater. 48/2019). Advanced Materials, 2019, 31, 1970337.	11.1	24
573	Tuning Fluorination of Linear Carbonate for Lithium-lon Batteries. Journal of the Electrochemical Society, 2022, 169, 040555.	1.3	24
574	Low-voltage and short-channel pentacene field-effect transistors with top-contact geometry using parylene-C shadow masks. Applied Physics Letters, 2010, 96, .	1.5	23
575	Enhanced Cycling Stability of Sulfur Electrodes through Effective Binding of Pyridine-Functionalized Polymer. ACS Energy Letters, 2017, 2, 2454-2462.	8.8	23
576	A Carbon Flower Based Flexible Pressure Sensor Made from Largeâ€Area Coating. Advanced Materials Interfaces, 2020, 7, 2000875.	1.9	23

#	Article	IF	CITATIONS
577	Dip-Pen Nanolithography of Electrical Contacts to Single Graphene Flakes. ACS Nano, 2010, 4, 6409-6416.	7.3	22
578	Engineering the metal gate electrode for controlling the threshold voltage of organic transistors. Applied Physics Letters, 2012, 101, 063304.	1.5	22
579	<i>p</i> -Channel Field-Effect Transistors Based on C ₆₀ Doped with Molybdenum Trioxide. ACS Applied Materials & Doped With Molybdenum Trioxide.	4.0	22
580	Surpassing the Exciton Diffusion Limit in Single-Walled Carbon Nanotube Sensitized Solar Cells. ACS Nano, 2016, 10, 11258-11265.	7.3	22
581	Characterization and Understanding of Thermoresponsive Polymer Composites Based on Spiky Nanostructured Fillers. Advanced Electronic Materials, 2017, 3, 1600397.	2.6	22
582	Stress Markers for Mental States and Biotypes of Depression and Anxiety: A Scoping Review and Preliminary Illustrative Analysis. Chronic Stress, 2021, 5, 247054702110003.	1.7	22
583	Influence of disorder on the electron transport properties in fluorinated copper-phthalocyanine thin films. Journal of Applied Physics, 2001, 89, 3526-3528.	1.1	21
584	Process design kit for flexible hybrid electronics., 2018,,.		21
585	Understanding the Impact of Oligomeric Polystyrene Side Chain Arrangement on the Allâ€Polymer Solar Cell Performance. Advanced Energy Materials, 2018, 8, 1701552.	10.2	21
586	Synthesis and Properties of Soluble Fused Thiophene Diketopyrrolopyrrole-Based Polymers with Tunable Molecular Weight. Macromolecules, 2018, 51, 9422-9429.	2.2	21
587	Microstructural Evolution of the Thin Films of a Donor–Acceptor Semiconducting Polymer Deposited by Meniscus-Guided Coating. Macromolecules, 2018, 51, 4325-4340.	2.2	21
588	Bridging Thermal Catalysis and Electrocatalysis: Catalyzing CO ₂ Conversion with Carbonâ€Based Materials. Angewandte Chemie - International Edition, 2021, 60, 17472-17480.	7.2	21
589	Modular Synthesis of Fully Degradable Imine-Based Semiconducting p-Type and n-Type Polymers. Chemistry of Materials, 2021, 33, 7465-7474.	3.2	21
590	Photoluminescence decay dynamics of dendritically substituted conjugated polymers. Synthetic Metals, 2001, 116, 41-44.	2.1	20
591	Impact of the Crystallite Orientation Distribution on Exciton Transport in Donor–Acceptor Conjugated Polymers. ACS Applied Materials & Samp; Interfaces, 2015, 7, 28035-28041.	4.0	20
592	Organic lasers based on lithographically defined photonic-bandgap resonators. Electronics Letters, 1998, 34, 90.	0.5	19
593	Synthesis of regioregular pentacene-containing conjugated polymers. Journal of Materials Chemistry, 2011, 21, 7078.	6.7	19
594	Atomic layer deposition of high- <i>k</i> dielectrics on single-walled carbon nanotubes: a Raman study. Nanotechnology, 2013, 24, 245703.	1.3	19

#	Article	IF	Citations
595	Aligned SWNT Films from Low-Yield Stress Gels and Their Transparent Electrode Performance. ACS Applied Materials & Diterfaces, 2013, 5, 7244-7252.	4.0	19
596	Oriented, polymer-stabilized carbon nanotube films: influence of dispersion rheology. Nanotechnology, 2013, 24, 015709.	1.3	19
597	Topological origin of strain induced damage of multi-network elastomers by bond breaking. Extreme Mechanics Letters, 2020, 40, 100883.	2.0	19
598	Field-effect transistors made from macroscopic single crystals of tetracene and related semiconductors on polymer dielectrics. Journal of Materials Research, 2004, 19, 1995-1998.	1.2	18
599	X-ray irradiation effects in top contact, pentacene based field effect transistors for space related applications. Applied Physics Letters, 2006, 88, 151907.	1.5	18
600	Full-Swing and High-Gain Pentacene Logic Circuits on Plastic Substrate. IEEE Electron Device Letters, 2010, 31, 1488-1490.	2.2	18
601	Microfluidic Arrays for Rapid Characterization of Organic Thinâ€Film Transistor Performance. Advanced Materials, 2011, 23, 1257-1261.	11.1	18
602	Nanosized Zirconium Porphyrinic Metal–Organic Frameworks that Catalyze the Oxygen Reduction Reaction in Acid. Small Methods, 2020, 4, 2000085.	4.6	18
603	Isotropic transport in an oligothiophene derivative for single-crystal field-effect transistor applications. Applied Physics Letters, 2009, 94, 202101.	1.5	17
604	Energetics and stability of pentacene thin films on amorphous and crystalline octadecylsilane modified surfaces. Journal of Materials Chemistry, 2010, 20, 2664.	6.7	17
605	Organic Transistors. , 2003, , .		16
606	Oligothiophene based organic semiconductors with cross-linkable benzophenone moieties. Synthetic Metals, 2008, 158, 958-963.	2.1	16
607	Selective Surface Chemistry Using Alumina Nanoparticles Generated from Block Copolymers. Langmuir, 2011, 27, 445-451.	1.6	16
608	Using Nitrile Functional Groups to Replace Amines for Solution-Deposited Single-Walled Carbon Nanotube Network Films. ACS Nano, 2012, 6, 4845-4853.	7.3	16
609	5,11-Conjugation-extended low-bandgap anthradithiophene-containing polymer exhibiting enhanced thin-film order and field-effect mobility. Chemical Communications, 2012, 48, 7286.	2.2	16
610	Confined organization of fullerene units along high polymer chains. Journal of Materials Chemistry C, 2013, 1, 5747.	2.7	16
611	Selective solution shearing deposition of high performance TIPS-pentacene polymorphs through chemical patterning. Journal of Materials Research, 2014, 29, 2615-2624.	1.2	16
612	Tuning domain size and crystallinity in isoindigo/PCBM organic solar cells via solution shearing. Organic Electronics, 2017, 40, 79-87.	1.4	16

#	Article	IF	Citations
613	Compact Modeling of Thin-Film Transistors for Flexible Hybrid IoT Design. IEEE Design and Test, 2019, 36, 6-14.	1.1	16
614	Molecular nano-junctions formed with different metallic electrodes. Nanotechnology, 2005, 16, 495-500.	1.3	15
615	Self-Aligned, Insulating-Layer Structure for Integrated Fabrication of Organic Self-Assembled Multilayer Electronic Devices. Nano Letters, 2004, 4, 2489-2492.	4.5	14
616	Impact of regioregularity on thin-film transistor and photovoltaic cell performances of pentacene-containing polymers. Journal of Materials Chemistry, 2012, 22, 4356.	6.7	14
617	High performance organic thin film transistors using chemically modified bottom contacts and dielectric surfaces. Organic Electronics, 2014, 15, 2073-2078.	1.4	14
618	Robust design and design automation for flexible hybrid electronics., 2017,,.		14
619	Dense Carbon Nanoflower Pellets for Methane Storage. ACS Applied Nano Materials, 2020, 3, 8278-8285.	2.4	14
620	Controlling Polymer Morphology in Blade-Coated All-Polymer Solar Cells. Chemistry of Materials, 2021, 33, 5951-5961.	3.2	14
621	Synthesis and physical measurements of a photorefractive polymer. Journal of the Chemical Society Chemical Communications, 1992, , 1735.	2.0	13
622	Disentanglement of excited-state dynamics with implications for FRET measurements: two-dimensional electronic spectroscopy of a BODIPY-functionalized cavitand. Chemical Science, 2018, 9, 3694-3703.	3.7	13
623	Enhanced Charge Transport and Stability Conferred by Iron(III)â€Coordination in a Conjugated Polymer Thinâ€Film Transistors. Advanced Electronic Materials, 2018, 4, 1800239.	2.6	13
624	Space charge effects in polymer-based light-emitting diodes studied by means of a polarization sensitive electroreflectance technique. Journal of Applied Physics, 2002, 91, 5521-5532.	1.1	12
625	Micrometerâ€sized DNA–Singleâ€Fluorophore–DNA Supramolecule: Synthesis and Singleâ€Molecule Characterization. Small, 2009, 5, 2418-2423.	5.2	12
626	Facile Synthesis of Nitrogen-doped Porous Carbon for Selective CO2 Capture. Energy Procedia, 2014, 63, 2144-2151.	1.8	12
627	Thermotropic Phase Transition of Benzodithiophene Copolymer Thin Films and Its Impact on Electrical and Photovoltaic Characteristics. Chemistry of Materials, 2015, 27, 1223-1232.	3.2	12
628	Direct imaging of rotating molecules anchored on graphene. Nanoscale, 2016, 8, 13174-13180.	2.8	12
629	Reducing the contact resistance in bottom-contact-type organic field-effect transitors using an AgO <i> _x </i> interface layer. Applied Physics Express, 2017, 10, 091601.	1.1	12
630	Self-Assembled Monolayer Transistors. Advanced Materials, 2002, 14, 323-326.	11.1	11

#	Article	IF	CITATIONS
631	Organic n-channel thin film transistors based on dichlorinated naphthalene diimides. , 2010, , .		11
632	Micro-imprinted prism substrate for self-aligned short channel organic transistors on a flexible substrate. Applied Physics Letters, 2012, 100, .	1.5	11
633	Pressure Sensors: A Sensitive and Biodegradable Pressure Sensor Array for Cardiovascular Monitoring (Adv. Mater. 43/2015). Advanced Materials, 2015, 27, 6953-6953.	11.1	11
634	Densely Packed and Highly Ordered Carbon Flower Particles for High Volumetric Performance. Small Science, 2021, 1, 2000067.	5.8	11
635	2,9-Dibromopentacene: Synthesis and the role of substituent and symmetry on solid-state order. Synthetic Metals, 2010, 160, 2447-2451.	2.1	10
636	The Shear Flow Processing of Controlled DNA Tethering and Stretching for Organic Molecular Electronics. ACS Nano, 2011, 5, 275-282.	7.3	10
637	Themed issue on "organic optoelectronic materialsâ€. Journal of Materials Chemistry, 2012, 22, 4134-4135.	6.7	10
638	High performance tetrathienoacene-DDP based polymer thin-film transistors using a photo-patternable epoxy gate insulating layer. Organic Electronics, 2014, 15, 991-996.	1.4	10
639	High performance top contact fused thiopheneâ€"diketopyrrolopyrrole copolymer transistors using a photolithographic metal lift-off process. Organic Electronics, 2015, 20, 55-62.	1.4	10
640	Enhancement of ambipolar characteristics in single-walled carbon nanotubes using C60 and fabrication of logic gates. Applied Physics Letters, 2015, 106, 103501.	1.5	10
641	A Solutionâ€Processable Highâ€Modulus Crystalline Artificial Solid Electrolyte Interphase for Practical Lithium Metal Batteries. Advanced Energy Materials, 2022, 12, .	10.2	10
642	Orthogonal Self-Aligned Electroless Metallization by Molecular Self-Assembly. Langmuir, 2002, 18, 9625-9628.	1.6	9
643	Nanoscale organic transistors based on self-assembled monolayers. Applied Physics Letters, 2002, 80, 847-849.	1.5	9
644	Organic insulator/semiconductor heterostructure monolayer transistors. Applied Physics Letters, 2002, 80, 332-333.	1.5	9
645	The effect of amine protonation on the electrical properties of spin-assembled single-walled carbon nanotube networks. Nanotechnology, 2011, 22, 125201.	1.3	9
646	Compact modeling of carbon nanotube thin film transistors for flexible circuit design. , 2018, , .		9
647	Post-surgical wireless monitoring of arterial health progression. IScience, 2021, 24, 103079.	1.9	9
648	Parallel Fabrication of Electrode Arrays on Single-Walled Carbon Nanotubes using Dip-Pen-Nanolithography-Patterned Etch Masks. Langmuir, 2010, 26, 6853-6859.	1.6	8

#	Article	IF	Citations
649	Swelling of Polymer Dielectric Thin Films for Organic-Transistor-Based Aqueous Sensing Applications. Chemistry of Materials, 2013, 25, 5018-5022.	3.2	8
650	Observation of orientation-dependent photovoltaic behaviors in aligned organic nanowires. Applied Physics Letters, 2013, 103, .	1.5	8
651	Compressive stress profiles of chemically strengthened glass after exposure to high voltage electric fields. Journal of Non-Crystalline Solids, 2014, 394-395, 6-8.	1.5	8
652	A Novel Technology for Free Flap Monitoring: Pilot Study of a Wireless, Biodegradable Sensor. Journal of Reconstructive Microsurgery, 2020, 36, 182-190.	1.0	8
653	Konjugierte, flüssigkristalline Polymere. Angewandte Chemie, 1993, 105, 1392-1394.	1.6	7
654	Electroactive Organic Materials. MRS Bulletin, 2002, 27, 441-445.	1.7	7
655	Photophysics of anisotropic shear-aligned dendritic side group phenylenevinylene polymer. Journal of Physics Condensed Matter, 2002, 14, 12261-12270.	0.7	7
656	On the Working Mechanisms of Solidâ€State Doubleâ€Layerâ€Dielectricâ€Based Organic Fieldâ€Effect Transistors and Their Implication for Sensors. Advanced Electronic Materials, 2018, 4, 1700326.	2.6	7
657	Enhanced Process Integration and Device Performance of Carbon Nanotubes via Flocculation. Small Methods, 2018, 2, 1800189.	4.6	7
658	Material issues for construction of organic and polymeric driving circuits for display and electronic applications. Macromolecular Symposia, 2000, 154, 199-208.	0.4	6
659	Multiple pulse transient spectroscopy in luminescent π-conjugated polymers. Synthetic Metals, 2001, 116, 5-7.	2.1	6
660	Nanoscale patterning in application to materials and device structures. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 3132.	1.6	6
661	Fermi level depinning at metal-organic semiconductor interface for low-resistance Ohmic contacts. , 2009, , .		6
662	Contacting nanowires and nanotubes with atomic precision for electronic transport. Applied Physics Letters, 2012, 100, .	1.5	6
663	Effect of Chemical Structure on Polymer-Templated Growth of Graphitic Nanoribbons. ACS Nano, 2015, 9, 9043-9049.	7.3	6
664	Twisted Aâ€Dâ€A Type Acceptors with Thermallyâ€Activated Delayed Crystallization Behavior for Efficient Nonfullerene Organic Solar Cells. Advanced Energy Materials, 0, , 2103957.	10.2	6
665	High luminescent polymers for stretchable displays. National Science Review, 2023, 10, .	4.6	6
666	Printed organic transistors and molded plastic lasers. Israel Journal of Chemistry, 2000, 40, 139-146.	1.0	5

#	Article	IF	Citations
667	Dispersion of single walled carbon nanotubes in amidine solvents. Nanotechnology, 2012, 23, 344011.	1.3	5
668	OFETs: BASIC CONCEPTS AND MATERIAL DESIGNS. Materials and Energy, 2016, , 19-83.	2.5	5
669	Fred Wudl's fifty-year contribution to organic semiconductors. Journal of Materials Chemistry C, 2018, 6, 3483-3484.	2.7	5
670	Robust Design of Large Area Flexible Electronics via Compressed Sensing. , 2020, , .		5
671	Manipulation and statistical analysis of the fluid flow of polymer semiconductor solutions during meniscus-guided coating. MRS Bulletin, 2021, 46, 380-393.	1.7	5
672	A comparison of the properties of two structurally equivalent but regiochemically different monoâ€alkylated polybithiophenes prepared through AABBâ€type stille polycondensation. Journal of Polymer Science Part A, 2013, 51, 908-915.	2.5	4
673	Ultrafast energy transfer from rigid, branched side-chains into a conjugated, alternating copolymer. Journal of Chemical Physics, 2014, 140, 034903.	1.2	4
674	Fully biodegradable pressure sensor, viscoelastic behavior of PGS dielectric elastomer upon degradation. , 2015 , , .		4
675	A sensor measuring deformation and pressure, entirely biodegradable, for orthopedic applications. , 2016, , .		4
676	Effect of Extensional Flow on the Evaporative Assembly of a Donor–Acceptor Semiconducting Polymer. ACS Applied Electronic Materials, 2019, 1, 2445-2454.	2.0	4
677	Ultra-thin Skin Electronics for High Quality and Continuous Skin-Sensor-Silicon Interfacing. , 2019, , .		4
678	Effects of Water and Different Solutes on Carbonâ€Nanotube Lowâ€Voltage Fieldâ€Effect Transistors. Small, 2020, 16, e2002875.	5.2	4
679	Engineering Supramolecular Polymer Conformation for Efficient Carbon Nanotube Sorting. Small, 2020, 16, e2000923.	5.2	4
680	Bimetallic Nanocatalysts Immobilized in Nanoporous Hydrogels for Longâ€Term Robust Continuous Glucose Monitoring of Smart Contact Lens (Adv. Mater. 18/2022). Advanced Materials, 2022, 34, .	11.1	4
681	Patterned multiple color polymer light-emitting diodes. Thin Solid Films, 1999, 352, 239-242.	0.8	3
682	Large Area, Rubber Stamped Plastic Circuits for Electronic Paper. Materials Research Society Symposia Proceedings, 2000, 660, .	0.1	3
683	Recent Progress in Materials for Organic Electronics. ACS Symposium Series, 2004, , 1-14.	0.5	3
684	Molecular conductance measurements through printed Au nanodots. Applied Physics Letters, 2006, 89, 113107.	1.5	3

#	Article	IF	Citations
685	Resistance Switching in a Polystyrene Film Containing Au Nanoparticles. Japanese Journal of Applied Physics, 2007, 46, 3622-3625.	0.8	3
686	Switchable Wettability: Stretchable Organic Solar Cells (Adv. Mater. 15/2011). Advanced Materials, 2011, 23, 1770-1770.	11.1	3
687	Exploration of palladium-catalyzed reactions for the synthesis of conjugated polymers. , 1995, 2528, 210.		2
688	Experimental demonstration of dynamic equalization of three 2.5-Gbit/s WDM channels over 1000 km using acousto-optic tunable filters. , 0, , .		2
689	Facile Deposition Processes for Semiconducting Molecular Solids. Materials Research Society Symposia Proceedings, 1999, 598, 512.	0.1	2
690	Solubility- and temperature-driven thin film structures of polymeric thiophene derivatives for high performance OFET applications. Proceedings of SPIE, 2007, , .	0.8	2
691	Preparation of crystalline dielectric modification silane layer by spin-coating and its improvements on organic transistor performance. Proceedings of SPIE, 2009, , .	0.8	2
692	Themed issue on "Organic field-effect transistors: interfacial phenomena and electronic properties― Physical Chemistry Chemical Physics, 2015, 17, 26509-26511.	1.3	2
693	Process design kit and design automation for flexible hybrid electronics. Journal of the Society for Information Display, 2020, 28, 241-251.	0.8	2
694	71â€1: <i>Invited Paper:</i> Skinâ€inspired Electronics for Emerging Display Technology. Digest of Technical Papers SID International Symposium, 2021, 52, 1052-1055.	0.1	2
695	Inkjet-printed, intrinsically stretchable conductors and interconnects. , 2017, , .		2
696	Use of the acousto-optic tunable filter for optical spectrum analysis and EDFA power equalization in WDM systems. , $1996, $, .		1
697	Dynamics of space charge distributions in side-chain PPV LEDs. Synthetic Metals, 2001, 124, 45-48.	2.1	1
698	Rubber stamped plastic circuits for electronic paper. , 0, , .		1
699	High-Performance Air-Stable Solution Processed Organic Transistors. , 2008, , .		1
700	Organic TFTs: Microfluidic Arrays for Rapid Characterization of Organic Thin-Film Transistor Performance (Adv. Mater. 10/2011). Advanced Materials, 2011, 23, 1172-1172.	11.1	1
701	9.1: <i>Invited Paper</i> : Status and Outlook of Organic Electronic Materials for Flexible and Stretchable Displays. Digest of Technical Papers SID International Symposium, 2015, 46, 91-93.	0.1	1
702	P-198L:Late-News Poster: Graphene-Based Polymer Stabilized Liquid Crystal Electro-Optic Device. Digest of Technical Papers SID International Symposium, 2016, 47, 1666-1669.	0.1	1

#	Article	lF	Citations
703	16â€4: Invited Paper: Process Design Kit and Design Automation for Flexible Hybrid Electronics. Digest of Technical Papers SID International Symposium, 2019, 50, 217-220.	0.1	1
704	Wearable System Design using Intrinsically Stretchable Temperature Sensor., 2020,,.		1
705	A Compact Free-Floating Device for Passive Charge-Balanced Neural Stimulation using PEDOT/CNT microelectrodes., 2020, 2020, 3375-3378.		1
706	A Low-Temperature Boost for Stretchable Conductors. Matter, 2020, 3, 983-984.	5.0	1
707	Entrepreneurship in Polymer Chemistry. ACS Macro Letters, 2021, 10, 864-872.	2.3	1
708	Bridging Thermal Catalysis and Electrocatalysis: Catalyzing CO 2 Conversion with Carbonâ€Based Materials. Angewandte Chemie, 2021, 133, 17613-17621.	1.6	1
709	Densely Packed and Highly Ordered Carbon Flower Particles for High Volumetric Performance. Small Science, 2021, 1, 2170018.	5.8	1
710	Large Area, Rubber Stamped Plastic Circuits for Electronic Paper. Materials Research Society Symposia Proceedings, 2000, 660, 1.	0.1	1
711	A soft-electronic sensor network tracks neuromotor development in infants. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	1
712	Grazingâ€Incidence Texture Tomography and Diffuse Reflectivity Tomography of an Organic Semiconductor Device Array**. Chemistry Methods, 2022, 2, .	1.8	1
713	Thin-film Transistors From Organic Semiconducting Materials, Processing Technologies for., 2001,, 9319-9323.		0
714	Nanoscale Organic Electronic Devices Formed by Lamination With Stamps. Materials Research Society Symposia Proceedings, 2002, 737, 600.	0.1	0
715	Nanoscale Organic Electronic Devices Formed by Lamination With Stamps. Materials Research Society Symposia Proceedings, 2002, 761, 1.	0.1	0
716	Organic Materials for Multifunctional Transistor-Based Devices. Materials Research Society Symposia Proceedings, 2002, 725, 1.	0.1	0
717	Conductance of molecular nanojunctions: roles of surface topography and metal contacts. , 2005, 5592, 91.		0
718	Structural Characterization of a Functionalized Organic Semiconductor. Materials Research Society Symposia Proceedings, 2005, 871, 1.	0.1	0
719	Crystalline structures in organic semiconductors for high-performance OTFT applications. , 2006, , .		0
720	Organic field-effect transistors with solution-processible thiophene/phenylene based-oligomer derivative films. , 2007, , .		0

#	Article	IF	CITATIONS
721	Materials and Processes for Thin Film Flexible Electronics. ECS Meeting Abstracts, 2008, , .	0.0	О
722	New Copolymers Based on Acenaphto [1,2-b] thieno [3,4-e] Pyrazine for Transistor and Solar Cell Applications. Materials Research Society Symposia Proceedings, 2009, 1197, 13.	0.1	0
723	58.4: ⟨i⟩Invited Paper⟨/i⟩: Solution Assembly of Transistor Arrays Based on Sorted Nanotube Networks for Largeâ€scale Flexible Electronic Applications. Digest of Technical Papers SID International Symposium, 2009, 40, 877-879.	0.1	O
724	Creation of Face-to-face Ï∈-Ï∈ Stacking of Fused Acene Backbones by Aryl-perfluoroaryl Interactions and Induction of Charge Transport Properties. Materials Research Society Symposia Proceedings, 2011, 1360, 171001.	0.1	0
725	Thin Films: Tuning Local Molecular Orientation-Composition Correlations in Binary Organic Thin Films by Solution Shearing (Adv. Funct. Mater. 21/2015). Advanced Functional Materials, 2015, 25, 3106-3106.	7.8	О
726	Pâ€58: Highly Stable Organic Thinâ€Film Transistor array Fabricated on Gorilla Glass Substrates using Direct Photolithography. Digest of Technical Papers SID International Symposium, 2015, 46, 1359-1361.	0.1	0
727	High performance all polymer solar cells fabricated via non-halogenated solvents (Presentation) Tj ETQq1 1 0.784	314 rgBT / 0.8	Overlock 10
728	Development of organic semiconducting technology to realize low driving voltages. , 2016, , .		0
729	Process Design Kit and Design Automation for Flexible Hybrid Electronics. , 2019, , .		0
730	Engineering skin-like soft electrical interface with biological systems. , 0, , .		0
731	ENGINEERING OF SIDEGROUPS TO ENHANCE LUMINESCENCE EFFICIENCY OF CONJUGATED POLYMERS. , 2000, , .		O
732	Characterization of Nanoscale Molecular Junctions. , 2004, , 1-12.		0
733	Manipulation and statistical analysis of the fluid flow of polymer semiconductor solutions during meniscus-guided coating. MRS Bulletin, 0, , 1-14.	1.7	О
734	Editorial for the special issue of <i>Materials Horizons</i> in honor of Seth Marder. Materials Horizons, 2022, 9, 15-16.	6.4	0
735	Skin-inspired Organic Electronics., 0,,.		0