## Jean-Pierre Majoral

# List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2860338/jean-pierre-majoral-publications-by-year.pdf

Version: 2024-04-04

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

| 357 papers  | 15,919                | 71      | 102     |
|-------------|-----------------------|---------|---------|
|             | citations             | h-index | g-index |
| 369         | 17,093 ext. citations | 7.9     | 6.59    |
| ext. papers |                       | avg, IF | L-index |

| #   | Paper                                                                                                                                                                                                                                       | IF   | Citations |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 357 | Phosphorus dendron nanomicelles as a platform for combination anti-inflammatory and antioxidative therapy of acute lung injury <i>Theranostics</i> , <b>2022</b> , 12, 3407-3419                                                            | 12.1 | 1         |
| 356 | In Vitro Validation of the Therapeutic Potential of Dendrimer-Based Nanoformulations against Tumor Stem Cells. <i>International Journal of Molecular Sciences</i> , <b>2022</b> , 23, 5691                                                  | 6.3  | 2         |
| 355 | Dendriplex-Impregnated Hydrogels With Programmed Release Rate <i>Frontiers in Chemistry</i> , <b>2021</b> , 9, 780608                                                                                                                       | 5    | 3         |
| 354 | Copper complexes of phosphorus dendrimers and their properties. <i>Inorganica Chimica Acta</i> , <b>2021</b> , 517, 120212                                                                                                                  | 2.7  | 3         |
| 353 | Engineered non-invasive functionalized dendrimer/dendron-entrapped/complexed gold nanoparticles as a novel class of theranostic (radio)pharmaceuticals in cancer therapy. <i>Journal of Controlled Release</i> , <b>2021</b> , 332, 346-366 | 11.7 | 10        |
| 352 | Safe Polycationic Dendrimers as Potent Oral In Vivo Inhibitors of : A New Therapy to Take Down Tuberculosis. <i>Biomacromolecules</i> , <b>2021</b> , 22, 2659-2675                                                                         | 6.9  | 5         |
| 351 | First-in-class and best-in-class dendrimer nanoplatforms from concept to clinic: Lessons learned moving forward. <i>European Journal of Medicinal Chemistry</i> , <b>2021</b> , 219, 113456                                                 | 6.8  | 6         |
| 350 | Non-invasive intranasal administration route directly to the brain using dendrimer nanoplatforms: An opportunity to develop new CNS drugs. <i>European Journal of Medicinal Chemistry</i> , <b>2021</b> , 209, 112905                       | 6.8  | 15        |
| 349 | Multivalent Copper(II)-Conjugated Phosphorus Dendrimers with Noteworthy and Antitumor Activities: A Concise Overview. <i>Molecular Pharmaceutics</i> , <b>2021</b> , 18, 65-73                                                              | 5.6  | 5         |
| 348 | In vivo therapeutic applications of phosphorus dendrimers: state of the art. <i>Drug Discovery Today</i> , <b>2021</b> , 26, 677-689                                                                                                        | 8.8  | 10        |
| 347 | Impact of molecular rigidity on the gene delivery efficiency of core-shell tecto dendrimers. <i>Journal of Materials Chemistry B</i> , <b>2021</b> , 9, 6149-6154                                                                           | 7.3  | O         |
| 346 | Hybrid phosphorus liologen dendrimers as new soft nanoparticles: design and properties. <i>Organic Chemistry Frontiers</i> , <b>2021</b> , 8, 4607-4622                                                                                     | 5.2  | 2         |
| 345 | Dendritic Macromolecular Architectures: Dendrimer-Based Polyion Complex Micelles. <i>Biomacromolecules</i> , <b>2021</b> , 22, 262-274                                                                                                      | 6.9  | 4         |
| 344 | Clinical diagonal translation of nanoparticles: Case studies in dendrimer nanomedicine. <i>Journal of Controlled Release</i> , <b>2021</b> , 337, 356-370                                                                                   | 11.7 | 5         |
| 343 | Functionalized Dendrimer Platforms as a New Forefront Arsenal Targeting SARS-CoV-2: An Opportunity. <i>Pharmaceutics</i> , <b>2021</b> , 13,                                                                                                | 6.4  | 3         |
| 342 | Facile Synthesis of Amphiphilic Fluorescent Phosphorus Dendron-Based Micelles as Antiproliferative Agents: First Investigations. <i>Bioconjugate Chemistry</i> , <b>2021</b> , 32, 339-349                                                  | 6.3  | 8         |
| 341 | Revisiting Cationic Phosphorus Dendrimers as a Nonviral Vector for Optimized Gene Delivery Toward Cancer Therapy Applications. <i>Biomacromolecules</i> , <b>2020</b> , 21, 2502-2511                                                       | 6.9  | 24        |

### (2019-2020)

| 340 | Phosphorus dendrimer-based copper(II) complexes enable ultrasound-enhanced tumor theranostics. <i>Nano Today</i> , <b>2020</b> , 33, 100899                                                                                   | 17.9 | 23 |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----|
| 339 | Generation Dependent Effects and Entrance to Mitochondria of Hybrid Dendrimers on Normal and Cancer Neuronal Cells In Vitro. <i>Biomolecules</i> , <b>2020</b> , 10,                                                          | 5.9  | 5  |
| 338 | Potent Anticancer Efficacy of First-In-Class Cu and Au Metaled Phosphorus Dendrons with Distinct Cell Death Pathways. <i>Chemistry - A European Journal</i> , <b>2020</b> , 26, 5903-5910                                     | 4.8  | 8  |
| 337 | In Search of a Phosphorus Dendrimer-Based Carrier of Rose Bengal: Tyramine Linker Limits Fluorescent and Phototoxic Properties of a Photosensitizer. <i>International Journal of Molecular Sciences</i> , <b>2020</b> , 21,   | 6.3  | 7  |
| 336 | Superstructured poly(amidoamine) dendrimer-based nanoconstructs as platforms for cancer nanomedicine: A concise review. <i>Coordination Chemistry Reviews</i> , <b>2020</b> , 421, 213463                                     | 23.2 | 41 |
| 335 | From Riluzole to Dexpramipexole via Substituted-Benzothiazole Derivatives for Amyotrophic Lateral Sclerosis Disease Treatment: Case Studies. <i>Molecules</i> , <b>2020</b> , 25,                                             | 4.8  | 6  |
| 334 | Phosphorus dendrimers as powerful nanoplatforms for drug delivery, as fluorescent probes and for liposome interaction studies: A concise overview. <i>European Journal of Medicinal Chemistry</i> , <b>2020</b> , 208, 112788 | 6.8  | 7  |
| 333 | Dendrimers toward Translational Nanotherapeutics: Concise Key Step Analysis. <i>Bioconjugate Chemistry</i> , <b>2020</b> , 31, 2060-2071                                                                                      | 6.3  | 25 |
| 332 | Dendrimer- and polymeric nanoparticle-aptamer bioconjugates as nonviral delivery systems: a new approach in medicine. <i>Drug Discovery Today</i> , <b>2020</b> , 25, 1065-1073                                               | 8.8  | 24 |
| 331 | Morpholino-functionalized phosphorus dendrimers for precision regenerative medicine: osteogenic differentiation of mesenchymal stem cells. <i>Nanoscale</i> , <b>2019</b> , 11, 17230-17234                                   | 7.7  | 2  |
| 330 | Fluorescent phosphorus dendrimers excited by two photons: synthesis, two-photon absorption properties and biological uses. <i>Beilstein Journal of Organic Chemistry</i> , <b>2019</b> , 15, 2287-2303                        | 2.5  | 5  |
| 329 | Urea-assisted cooperative assembly of phosphorus dendrimer inc oxide hybrid nanostructures. <i>New Journal of Chemistry</i> , <b>2019</b> , 43, 2141-2147                                                                     | 3.6  | 5  |
| 328 | Dendrimer-Enabled Therapeutic Antisense Delivery Systems as Innovation in Medicine. <i>Bioconjugate Chemistry</i> , <b>2019</b> , 30, 1938-1950                                                                               | 6.3  | 23 |
| 327 | Dendrimer for Templating the Growth of Porous Catechol-Coordinated Titanium Dioxide Frameworks: Toward Hemocompatible Nanomaterials. <i>ACS Applied Nano Materials</i> , <b>2019</b> , 2, 2979-2990                           | 5.6  | 6  |
| 326 | Dendrimer mediated targeting of siRNA against polo-like kinase for the treatment of triple negative breast cancer. <i>Journal of Biomedical Materials Research - Part A</i> , <b>2019</b> , 107, 1933-1944                    | 5.4  | 16 |
| 325 | Phosphorus dendrimers functionalised with nitrogen ligands, for catalysis and biology. <i>Dalton Transactions</i> , <b>2019</b> , 48, 7483-7493                                                                               | 4.3  | 7  |
| 324 | Exploration of biomedical dendrimer space based on in-vitro physicochemical parameters: key factor analysis (Part 1). <i>Drug Discovery Today</i> , <b>2019</b> , 24, 1176-1183                                               | 8.8  | 23 |
| 323 | Exploration of biomedical dendrimer space based on in-vivo physicochemical parameters: Key factor analysis (Part 2). <i>Drug Discovery Today</i> , <b>2019</b> , 24, 1184-1192                                                | 8.8  | 22 |

| 322                      | Interfacial complexation driven three-dimensional assembly of cationic phosphorus dendrimers and graphene oxide sheets. <i>Nanoscale Advances</i> , <b>2019</b> , 1, 314-321                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.1              | 7                                                    |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------------------------------|
| 321                      | Metal-based phosphorus dendrimers as novel nanotherapeutic strategies to tackle cancers: A concise overview. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2019, 11, e157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7 <sup>9.2</sup> | 10                                                   |
| 320                      | Synergistic Effects of Anionic/Cationic Dendrimers and Levofloxacin on Antibacterial Activities. <i>Molecules</i> , <b>2019</b> , 24,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.8              | 23                                                   |
| 319                      | Fluorescent Phosphorus Dendrimers: Towards Material and Biological Applications. <i>ChemPlusChem</i> , <b>2019</b> , 84, 1070-1080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.8              | 17                                                   |
| 318                      | Phosphorhydrazones as Useful Building Blocks for Special Architectures: Macrocycles and Dendrimers. <i>European Journal of Inorganic Chemistry</i> , <b>2019</b> , 2019, 1457-1475                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.3              | 8                                                    |
| 317                      | Design, complexing and catalytic properties of phosphorus thiazoles and benzothiazoles: a concise overview. <i>New Journal of Chemistry</i> , <b>2019</b> , 43, 16785-16795                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.6              | 4                                                    |
| 316                      | Dendrimeric Nanoparticles for Two-Photon Photodynamic Therapy and Imaging: Synthesis, Photophysical Properties, Innocuousness in Daylight and Cytotoxicity under Two-Photon Irradiation in the NIR. <i>Chemistry - A European Journal</i> , <b>2019</b> , 25, 3637-3649                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.8              | 23                                                   |
| 315                      | Recent therapeutic applications of the theranostic principle with dendrimers in oncology. <i>Science China Materials</i> , <b>2018</b> , 61, 1367-1386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.1              | 21                                                   |
| 314                      | Synthesis of dissymmetric phosphorus dendrimers using an unusual protecting group. <i>New Journal of Chemistry</i> , <b>2018</b> , 42, 8985-8991                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.6              | 4                                                    |
| 313                      | Construction of iron oxide nanoparticle-based hybrid platforms for tumor imaging and therapy. <i>Chemical Society Reviews</i> , <b>2018</b> , 47, 1874-1900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 58.5             | 214                                                  |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                                                      |
| 312                      | Interactions gold/phosphorus dendrimers. Versatile ways to hybrid organichetallic macromolecules. <i>Coordination Chemistry Reviews</i> , <b>2018</b> , 358, 80-91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 23.2             | 16                                                   |
| 312                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23.2<br>7·3      | 16<br>44                                             |
|                          | macromolecules. <i>Coordination Chemistry Reviews</i> , <b>2018</b> , 358, 80-91  Cyclotriphosphazene core-based dendrimers for biomedical applications: an update on recent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |                                                      |
| 311                      | macromolecules. <i>Coordination Chemistry Reviews</i> , <b>2018</b> , 358, 80-91  Cyclotriphosphazene core-based dendrimers for biomedical applications: an update on recent advances. <i>Journal of Materials Chemistry B</i> , <b>2018</b> , 6, 884-895  Targeted tumor dual mode CT/MR imaging using multifunctional polyethylenimine-entrapped gold                                                                                                                                                                                                                                                                                                                                                                                   | 7:3              | 44                                                   |
| 311                      | macromolecules. <i>Coordination Chemistry Reviews</i> , <b>2018</b> , 358, 80-91  Cyclotriphosphazene core-based dendrimers for biomedical applications: an update on recent advances. <i>Journal of Materials Chemistry B</i> , <b>2018</b> , 6, 884-895  Targeted tumor dual mode CT/MR imaging using multifunctional polyethylenimine-entrapped gold nanoparticles loaded with gadolinium. <i>Drug Delivery</i> , <b>2018</b> , 25, 178-186  Present drug-likeness filters in medicinal chemistry during the hit and lead optimization process:                                                                                                                                                                                        | 7-3              | 29                                                   |
| 311<br>310<br>309        | Cyclotriphosphazene core-based dendrimers for biomedical applications: an update on recent advances. <i>Journal of Materials Chemistry B</i> , <b>2018</b> , 6, 884-895  Targeted tumor dual mode CT/MR imaging using multifunctional polyethylenimine-entrapped gold nanoparticles loaded with gadolinium. <i>Drug Delivery</i> , <b>2018</b> , 25, 178-186  Present drug-likeness filters in medicinal chemistry during the hit and lead optimization process: how far can they be simplified?. <i>Drug Discovery Today</i> , <b>2018</b> , 23, 605-615  Engineering CNDPE of dendrimers containing phosphorous interior compositions to produce new                                                                                    | 7·3<br>7<br>8.8  | <ul><li>44</li><li>29</li><li>53</li></ul>           |
| 311<br>310<br>309<br>308 | Cyclotriphosphazene core-based dendrimers for biomedical applications: an update on recent advances. <i>Journal of Materials Chemistry B</i> , <b>2018</b> , 6, 884-895  Targeted tumor dual mode CT/MR imaging using multifunctional polyethylenimine-entrapped gold nanoparticles loaded with gadolinium. <i>Drug Delivery</i> , <b>2018</b> , 25, 178-186  Present drug-likeness filters in medicinal chemistry during the hit and lead optimization process: how far can they be simplified?. <i>Drug Discovery Today</i> , <b>2018</b> , 23, 605-615  Engineering CNDP® of dendrimers containing phosphorous interior compositions to produce new emerging properties. <i>Journal of Nanoparticle Research</i> , <b>2018</b> , 20, 1 | 7·3 7 8.8 2.3    | <ul><li>44</li><li>29</li><li>53</li><li>2</li></ul> |

#### (2017-2018)

| 304 | Which Dendrimer to Attain the Desired Properties? Focus on Phosphorhydrazone Dendrimers. <i>Molecules</i> , <b>2018</b> , 23,                                                                                 | 4.8              | 14  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----|
| 303 | Multiplexing technology for in vitro diagnosis of pathogens: the key contribution of phosphorus dendrimers. <i>Science China Materials</i> , <b>2018</b> , 61, 1454-1461                                      | 7.1              | 4   |
| 302 | Hydrogels of Polycationic Acetohydrazone-Modified Phosphorus Dendrimers for Biomedical Applications: Gelation Studies and Nucleic Acid Loading. <i>Pharmaceutics</i> , <b>2018</b> , 10,                      | 6.4              | 5   |
| 301 | First-in-Class Anti-Cancer Nanoparticle Copper(li) Phosphorus Dendrimers as Pro-Apoptotic Bax Activators <b>2018</b> , 245-264                                                                                |                  | 1   |
| 300 | Dendrimers in combination with natural products and analogues as anti-cancer agents. <i>Chemical Society Reviews</i> , <b>2018</b> , 47, 514-532                                                              | 58.5             | 122 |
| 299 | Bench-to-bedside translation of dendrimers: Reality or utopia? A concise analysis. <i>Advanced Drug Delivery Reviews</i> , <b>2018</b> , 136-137, 73-81                                                       | 18.5             | 37  |
| 298 | Doxorubicin-Conjugated PAMAM Dendrimers for pH-Responsive Drug Release and Folic Acid-Targeted Cancer Therapy. <i>Pharmaceutics</i> , <b>2018</b> , 10,                                                       | 6.4              | 51  |
| 297 | Elucidating the role of surface chemistry on cationic phosphorus dendrimer-siRNA complexation. <i>Nanoscale</i> , <b>2018</b> , 10, 10952-10962                                                               | 7.7              | 17  |
| 296 | Symmetrical and unsymmetrical incorporation of active biological monomers on the surface of phosphorus dendrimers. <i>Tetrahedron</i> , <b>2017</b> , 73, 1331-1341                                           | 2.4              | 4   |
| 295 | BF2 complexes of 1,3-diketones on the surface of phosphorus dendrimers: synthesis and study of the photoluminescence properties. <i>Canadian Journal of Chemistry</i> , <b>2017</b> , 95, 948-953             | 0.9              | 5   |
| 294 | Anti-Inflammatory Effect of Anti-TNF-EsiRNA Cationic Phosphorus Dendrimer Nanocomplexes Administered Intranasally in a Murine Acute Lung Injury Model. <i>Biomacromolecules</i> , <b>2017</b> , 18, 2379-2388 | 3 <sup>6.9</sup> | 49  |
| 293 | Versatile Reactivity of Cyclic 1,2-Dimethylhydrazinodiphosphines. <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , <b>2017</b> , 643, 903-908                                                      | 1.3              | 1   |
| 292 | Anticancer copper(II) phosphorus dendrimers are potent proapoptotic Bax activators. <i>European Journal of Medicinal Chemistry</i> , <b>2017</b> , 132, 142-156                                               | 6.8              | 54  |
| 291 | Cationic Phosphorus Dendrimer Enhances Photodynamic Activity of Rose Bengal against Basal Cell Carcinoma Cell Lines. <i>Molecular Pharmaceutics</i> , <b>2017</b> , 14, 1821-1830                             | 5.6              | 19  |
| 290 | Original Multivalent Gold(III) and Dual Gold(III)-Copper(II) Conjugated Phosphorus Dendrimers as Potent Antitumoral and Antimicrobial Agents. <i>Molecular Pharmaceutics</i> , <b>2017</b> , 14, 4087-4097    | 5.6              | 43  |
| 289 | Multi-Target Inhibition of Cancer Cell Growth by SiRNA Cocktails and 5-Fluorouracil Using Effective Piperidine-Terminated Phosphorus Dendrimers. <i>Colloids and Interfaces</i> , <b>2017</b> , 1, 6          | 3                | 21  |
| 288 | Can dendrimer based nanoparticles fight neurodegenerative diseases? Current situation versus other established approaches. <i>Progress in Polymer Science</i> , <b>2017</b> , 64, 23-51                       | 29.6             | 42  |
| 287 | Complexing Methylene Blue with Phosphorus Dendrimers to Increase Photodynamic Activity. <i>Molecules</i> , <b>2017</b> , 22,                                                                                  | 4.8              | 10  |

| 286         | The specific functionalization of cyclotriphosphazene for the synthesis of smart dendrimers. <i>Dalton Transactions</i> , <b>2016</b> , 45, 1810-22                                                                                                                                  | 4.3        | 67 |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----|
| 285         | Why and how have drug discovery strategies in pharma changed? What are the new mindsets?. <i>Drug Discovery Today</i> , <b>2016</b> , 21, 239-49                                                                                                                                     | 8.8        | 43 |
| 284         | Coordination chemistry with phosphorus dendrimers. Applications as catalysts, for materials, and in biology. <i>Coordination Chemistry Reviews</i> , <b>2016</b> , 308, 478-497                                                                                                      | 23.2       | 70 |
| 283         | A novel class of ethacrynic acid derivatives as promising drug-like potent generation of anticancer agents with established mechanism of action. <i>European Journal of Medicinal Chemistry</i> , <b>2016</b> , 122, 656-6                                                           | 6.8<br>73  | 23 |
| 282         | Ordered Layered Dendrimers Constructed from Two Known Dendrimer Families: Inheritance and Emergence of Properties. <i>Chemistry - A European Journal</i> , <b>2016</b> , 22, 10736-42                                                                                                | 4.8        | 9  |
| 281         | Compound high-quality criteria: a new vision to guide the development of drugs, current situation.<br>Drug Discovery Today, <b>2016</b> , 21, 573-84                                                                                                                                 | 8.8        | 27 |
| <b>2</b> 80 | Fourier transform infrared spectroscopy (FTIR) characterization of the interaction of anti-cancer photosensitizers with dendrimers. <i>Analytical and Bioanalytical Chemistry</i> , <b>2016</b> , 408, 535-44                                                                        | 4.4        | 22 |
| 279         | Bifunctional Phosphorus Dendrimers and Their Properties. <i>Molecules</i> , <b>2016</b> , 21, 538                                                                                                                                                                                    | 4.8        | 25 |
| 278         | Silica Functionalized by Bifunctional Dendrimers: Hybrid Nanomaterials for Trapping CO2. <i>European Journal of Inorganic Chemistry</i> , <b>2016</b> , 2016, 3103-3110                                                                                                              | 2.3        | 13 |
| 277         | Recoverable Dendritic Phase-Transfer Catalysts that Contain (+)-Cinchonine-Derived Ammonium Salts. <i>ChemCatChem</i> , <b>2016</b> , 8, 2049-2056                                                                                                                                   | 5.2        | 7  |
| 276         | Cyclotriphosphazene, an old compound applied to the synthesis of smart dendrimers with tailored properties. <i>Pure and Applied Chemistry</i> , <b>2016</b> , 88, 919-929                                                                                                            | 2.1        | 12 |
| 275         | Thiazoyl phosphines. Design, reactivity, and complexation. <i>Dalton Transactions</i> , <b>2016</b> , 45, 9695-703                                                                                                                                                                   | 4.3        | 3  |
| 274         | Layer-by-layer self-assembly of bisdendrons: An unprecedented route to multilayer thin films. <i>Macromolecular Research</i> , <b>2016</b> , 24, 851-855                                                                                                                             | 1.9        | 3  |
| 273         | Orthogonal Synthesis of Covalent Polydendrimer Frameworks by Fusing Classical and Onion-Peel Phosphorus-Based Dendritic Units. <i>Macromolecules</i> , <b>2016</b> , 49, 5796-5805                                                                                                   | 5.5        | 10 |
| 272         | Synthesis of onion-peel nanodendritic structures with sequential functional phosphorus diversity. <i>Chemistry - A European Journal</i> , <b>2015</b> , 21, 6400-8                                                                                                                   | 4.8        | 29 |
| 271         | Phosphorus dendrimers and photodynamic therapy. Spectroscopic studies on two dendrimer-photosensitizer complexes: Cationic phosphorus dendrimer with rose bengal and anionic phosphorus dendrimer with methylene blue. <i>International Journal of Pharmaceutics</i> , <b>2015</b> , | 6.5        | 31 |
| 270         | Synthesis and characterization of bifunctional dendrimers: preliminary use for the coating of gold surfaces and the proliferation of human osteoblasts (HOB). <i>New Journal of Chemistry</i> , <b>2015</b> , 39, 7194-72                                                            | .05<br>.05 | 20 |
| 269         | Organophosphonate bridged anatase mesocrystals: low temperature crystallization, thermal growth and hydrogen photo-evolution. <i>Dalton Transactions</i> , <b>2015</b> , 44, 15544-56                                                                                                | 4.3        | 16 |

#### (2014-2015)

| 268 | The key role of the scaffold on the efficiency of dendrimer nanodrugs. <i>Nature Communications</i> , <b>2015</b> , 6, 7722                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17.4          | 116 |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----|
| 267 | Anticancer siRNA cocktails as a novel tool to treat cancer cells. Part (A). Mechanisms of interaction. <i>International Journal of Pharmaceutics</i> , <b>2015</b> , 485, 261-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.5           | 56  |
| 266 | Anticancer siRNA cocktails as a novel tool to treat cancer cells. Part (B). Efficiency of pharmacological action. <i>International Journal of Pharmaceutics</i> , <b>2015</b> , 485, 288-94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.5           | 61  |
| 265 | Ternary cooperative assemblypolymeric condensation of photoactive viologen, phosphonate-terminated dendrimers and crystalline anatase nanoparticles. <i>Chemical Communications</i> , <b>2015</b> , 51, 17716-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.8           | 11  |
| 264 | Biological Activity of Mesoporous Dendrimer-Coated Titanium Dioxide: Insight on the Role of the Surface-Interface Composition and the Framework Crystallinity. <i>ACS Applied Materials &amp; ACS APPLIED &amp; ACS ACS APPLIED &amp; ACS APPLIED &amp; ACS ACS APPLIED &amp; ACS ACS APPLIED &amp; ACS ACS ACS ACS ACS APPLIED &amp; ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i> | 9.5           | 23  |
| 263 | Advances in combination therapies based on nanoparticles for efficacious cancer treatment: an analytical report. <i>Biomacromolecules</i> , <b>2015</b> , 16, 1-27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.9           | 85  |
| 262 | Investigations on dendrimer space reveal solid and liquid tumor growth-inhibition by original phosphorus-based dendrimers and the corresponding monomers and dendrons with ethacrynic acid motifs. <i>Nanoscale</i> , <b>2015</b> , 7, 3915-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.7           | 18  |
| 261 | The dendritic effect illustrated with phosphorus dendrimers. Chemical Society Reviews, 2015, 44, 3890-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>9</b> 58.5 | 104 |
| 260 | (+)-Cinchonine-Decorated Dendrimers as Recoverable Organocatalysts. <i>ChemCatChem</i> , <b>2015</b> , 7, 2698-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 794           | 6   |
| 259 | Fluorescent Phosphorus Dendrimer as a Spectral Nanosensor for Macrophage Polarization and Fate Tracking in Spinal Cord Injury. <i>Macromolecular Bioscience</i> , <b>2015</b> , 15, 1523-34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.5           | 27  |
| 258 | Synthesis, characterization and biological properties of new hybrid carbosilane liologen phosphorus dendrimers. <i>RSC Advances</i> , <b>2015</b> , 5, 25942-25958                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.7           | 21  |
| 257 | Cationic phosphorus dendrimers and therapy for Alzheimer's disease. <i>New Journal of Chemistry</i> , <b>2015</b> , 39, 4852-4859                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.6           | 31  |
| 256 | Phosphorus dendrimers as supports of transition metal catalysts. <i>Inorganica Chimica Acta</i> , <b>2015</b> , 431, 3-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.7           | 14  |
| 255 | Dendrimer space exploration: an assessment of dendrimers/dendritic scaffolding as inhibitors of protein-protein interactions, a potential new area of pharmaceutical development. <i>Chemical Reviews</i> , <b>2014</b> , 114, 1327-42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 68.1          | 68  |
| 254 | Poly(phosphorhydrazone) metallodendrimers. A review. <i>Inorganica Chimica Acta</i> , <b>2014</b> , 409, 68-88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.7           | 18  |
| 253 | Radical Dendrimers: A Family of Five Generations of Phosphorus Dendrimers Functionalized with TEMPO Radicals. <i>Macromolecules</i> , <b>2014</b> , 47, 7717-7724                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.5           | 33  |
| 252 | Viologen-based dendritic macromolecular asterisks: synthesis and interplay with gold nanoparticles. <i>Chemical Communications</i> , <b>2014</b> , 50, 6981-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.8           | 13  |
| 251 | Supermolecular columnar liquid-crystalline phosphorus dendrimers decorated with sulfonamide derivatives. <i>Chemistry - A European Journal</i> , <b>2014</b> , 20, 17047-58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.8           | 4   |

| 250 | In vitro PAMAM, phosphorus and viologen-phosphorus dendrimers prevent rotenone-induced cell damage. <i>International Journal of Pharmaceutics</i> , <b>2014</b> , 474, 42-9                                                  | 6.5         | 13  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----|
| 249 | Interference of cationic polymeric nanoparticles with clinical chemistry testsclinical relevance. <i>International Journal of Pharmaceutics</i> , <b>2014</b> , 473, 599-606                                                 | 6.5         | 13  |
| 248 | Bifunctional metallodendrimers based on AB5 derivatives of cyclotriphosphazene as core and P,N ligands as terminal functions. <i>Inorganica Chimica Acta</i> , <b>2014</b> , 409, 121-126                                    | 2.7         | 11  |
| 247 | A viologen phosphorus dendritic molecule as a carrier of ATP and Mant-ATP: spectrofluorimetric and NMR studies. <i>New Journal of Chemistry</i> , <b>2014</b> , 38, 6212-6222                                                | 3.6         | 9   |
| 246 | HIV-antigens charged on phosphorus dendrimers as tools for tolerogenic dendritic cells-based immunotherapy. <i>Current Medicinal Chemistry</i> , <b>2014</b> , 21, 1898-909                                                  | 4.3         | 18  |
| 245 | Mechanism of cationic phosphorus dendrimer toxicity against murine neural cell lines. <i>Molecular Pharmaceutics</i> , <b>2013</b> , 10, 3484-96                                                                             | 5.6         | 24  |
| 244 | Original multivalent copper(II)-conjugated phosphorus dendrimers and corresponding mononuclear copper(II) complexes with antitumoral activities. <i>Molecular Pharmaceutics</i> , <b>2013</b> , 10, 1459-64                  | 5.6         | 73  |
| 243 | Thiazolyl-phosphine hydrochloride salts: effective auxiliary ligands for ruthenium-catalyzed nitrile hydration reactions and related amide bond forming processes in water. <i>Green Chemistry</i> , <b>2013</b> , 15, 244   | <b>7</b> 10 | 59  |
| 242 | Positively charged phosphorus dendrimers. An overview of their properties. <i>New Journal of Chemistry</i> , <b>2013</b> , 37, 3358                                                                                          | 3.6         | 29  |
| 241 | Diversified Strategies for the Synthesis of Bifunctional Dendrimeric Structures. <i>European Journal of Organic Chemistry</i> , <b>2013</b> , 2013, 5414-5422                                                                | 3.2         | 15  |
| 240 | Viologen-phosphorus dendrimers exhibit minor toxicity against a murine neuroblastoma cell line. <i>Cellular and Molecular Biology Letters</i> , <b>2013</b> , 18, 459-78                                                     | 8.1         | 13  |
| 239 | Janus carbosilane/phosphorhydrazone dendrimers synthesized by the alickstaudinger reaction. <i>Tetrahedron Letters</i> , <b>2013</b> , 54, 6864-6867                                                                         | 2           | 12  |
| 238 | Doxycycline-regulated GDNF expression promotes axonal regeneration and functional recovery in transected peripheral nerve. <i>Journal of Controlled Release</i> , <b>2013</b> , 172, 841-51                                  | 11.7        | 48  |
| 237 | Interaction between viologen-phosphorus dendrimers and Bynuclein. <i>Journal of Luminescence</i> , <b>2013</b> , 134, 132-137                                                                                                | 3.8         | 8   |
| 236 | Effect of viologen-phosphorus dendrimers on acetylcholinesterase and butyrylcholinesterase activities. <i>International Journal of Biological Macromolecules</i> , <b>2013</b> , 54, 119-24                                  | 7.9         | 20  |
| 235 | Pyrene-tagged dendritic catalysts noncovalently grafted onto magnetic Co/C nanoparticles: an efficient and recyclable system for drug synthesis. <i>Angewandte Chemie - International Edition</i> , <b>2013</b> , 52, 3626-9 | 16.4        | 83  |
| 234 | Copper in dendrimer synthesis and applications of copperdendrimer systems in catalysis: a concise overview. <i>Tetrahedron</i> , <b>2013</b> , 69, 3103-3133                                                                 | 2.4         | 23  |
| 233 | Expand classical drug administration ways by emerging routes using dendrimer drug delivery systems: a concise overview. <i>Advanced Drug Delivery Reviews</i> , <b>2013</b> , 65, 1316-30                                    | 18.5        | 225 |

#### (2012-2013)

| 232 | Low temperature synthesis of ordered mesoporous stable anatase nanocrystals: the phosphorus dendrimer approach. <i>Nanoscale</i> , <b>2013</b> , 5, 2850-6                                                          | 7.7  | 29 |  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----|--|
| 231 | Dendrimer space concept for innovative nanomedicine: A futuristic vision for medicinal chemistry. <i>Progress in Polymer Science</i> , <b>2013</b> , 38, 993-1008                                                   | 29.6 | 95 |  |
| 230 | Dendrimers or Nanoparticles as Supports for the Design of Efficient and Recoverable Organocatalysts?. <i>Advanced Synthesis and Catalysis</i> , <b>2013</b> , 355, 1748-1754                                        | 5.6  | 56 |  |
| 229 | Dendrimers as macromolecular tools to tackle from colon to brain tumor types: a concise overview. <i>New Journal of Chemistry</i> , <b>2013</b> , 37, 3337                                                          | 3.6  | 40 |  |
| 228 | Synthesis and structural characterization of a dendrimer model compound based on a cyclotriphosphazene core with TEMPO radicals as substituents. <i>Organic Letters</i> , <b>2013</b> , 15, 3490-3                  | 6.2  | 28 |  |
| 227 | Efficient and recyclable rare earth-based catalysts for Friedel@rafts acylations under microwave heating: dendrimers show the way. <i>Green Chemistry</i> , <b>2013</b> , 15, 2075                                  | 10   | 40 |  |
| 226 | Viologen-Phosphorus Dendrimers Inhibit ⊞ynuclein Fibrillation. <i>Molecular Pharmaceutics</i> , <b>2013</b> , 10, 1131-7                                                                                            | 5.6  | 53 |  |
| 225 | Mannodendrimers prevent acute lung inflammation by inhibiting neutrophil recruitment.  Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8795-800                         | 11.5 | 83 |  |
| 224 | Pyrene-Tagged Dendritic Catalysts Noncovalently Grafted onto Magnetic Co/C Nanoparticles: An Efficient and Recyclable System for Drug Synthesis. <i>Angewandte Chemie</i> , <b>2013</b> , 125, 3714-3717            | 3.6  | 17 |  |
| 223 | Promising low-toxicity of viologen-phosphorus dendrimers against embryonic mouse hippocampal cells. <i>Molecules</i> , <b>2013</b> , 18, 12222-40                                                                   | 4.8  | 18 |  |
| 222 | Probing single molecule interactions by AFM using bio-functionalized dendritips. <i>Sensors and Actuators B: Chemical</i> , <b>2012</b> , 168, 436-441                                                              | 8.5  | 28 |  |
| 221 | Number of terminal groups versus generation of the dendrimer, which criteria influence the catalytic properties?. <i>Tetrahedron Letters</i> , <b>2012</b> , 53, 3876-3879                                          | 2    | 19 |  |
| 220 | Photo-physical and structural interactions between viologen phosphorus-based dendrimers and human serum albumin. <i>Journal of Luminescence</i> , <b>2012</b> , 132, 1553-1563                                      | 3.8  | 19 |  |
| 219 | Molecular and Macromolecular Engineering with Viologens as Building Blocks: Rational Design of Phosphorus Viologen Dendritic Structures. <i>European Journal of Organic Chemistry</i> , <b>2012</b> , 2012, 269-273 | 3.2  | 29 |  |
| 218 | Synthesis of Dendritic Diketones and Their Application in Copper-Catalyzed Diaryl Ether Formation. <i>European Journal of Organic Chemistry</i> , <b>2012</b> , 2012, 1056-1062                                     | 3.2  | 29 |  |
| 217 | From graftable biphotonic chromophores to water-soluble organic nanodots for biophotonics: the importance of environmental effects. <i>Chemistry - A European Journal</i> , <b>2012</b> , 18, 16450-62              | 4.8  | 26 |  |
| 216 | Dendritic phosphoramidite ligands for Rh-catalyzed [2+2+2] cycloaddition reactions: unprecedented enhancement of enantiodiscrimination. <i>Chemical Communications</i> , <b>2012</b> , 48, 9248-50                  | 5.8  | 40 |  |
| 215 | DendrimerBilica hybrid mesoporous materials. <i>New Journal of Chemistry</i> , <b>2012</b> , 36, 241-255                                                                                                            | 3.6  | 45 |  |
|     |                                                                                                                                                                                                                     |      |    |  |

| 214         | Phosphorus-containing dendrimers against Bynuclein fibril formation. <i>International Journal of Biological Macromolecules</i> , <b>2012</b> , 50, 1138-43                                                  | 7.9  | 48  |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 213         | Synthesis and characterization of water-soluble ferrocene-dendrimers. <i>Journal of Organometallic Chemistry</i> , <b>2012</b> , 718, 22-30                                                                 | 2.3  | 14  |
| 212         | Danus dendrimers: syntheses and properties. New Journal of Chemistry, 2012, 36, 217-226                                                                                                                     | 3.6  | 110 |
| 211         | Dendrimer therapeutics: covalent and ionic attachments. New Journal of Chemistry, 2012, 36, 227-240                                                                                                         | 3.6  | 53  |
| <b>2</b> 10 | Biological properties of new viologen-phosphorus dendrimers. <i>Molecular Pharmaceutics</i> , <b>2012</b> , 9, 448-5                                                                                        | 75.6 | 76  |
| 209         | Phosphorus dendrimers affect Alzheimer's (A🛭-28) peptide and MAP-Tau protein aggregation. <i>Molecular Pharmaceutics</i> , <b>2012</b> , 9, 458-69                                                          | 5.6  | 81  |
| 208         | Organocatalysis with dendrimers. Chemical Society Reviews, 2012, 41, 4113-25                                                                                                                                | 58.5 | 115 |
| 207         | An efficient and recyclable dendritic catalyst able to dramatically decrease palladium leaching in Suzuki couplings. <i>Green Chemistry</i> , <b>2012</b> , 14, 2807                                        | 10   | 31  |
| 206         | Hierarchically porous nanostructures through phosphonate-metal alkoxide condensation and growth using functionalized dendrimeric building blocks. <i>Chemical Communications</i> , <b>2011</b> , 47, 8626-8 | 5.8  | 32  |
| 205         | Interactions of phosphorus-containing dendrimers with liposomes. <i>Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids</i> , <b>2011</b> , 1811, 221-6                                    | 5    | 38  |
| 204         | Synthesis of dye/fluorescent functionalized dendrons based on cyclotriphosphazene. <i>Beilstein Journal of Organic Chemistry</i> , <b>2011</b> , 7, 1577-83                                                 | 2.5  | 19  |
| 203         | Nanostructuring polymeric materials by templating strategies. <i>Small</i> , <b>2011</b> , 7, 1384-91                                                                                                       | 11   | 16  |
| 202         | Fluorescent core-shell star polymers based bioassays for ultrasensitive DNA detection by surface plasmon fluorescence spectroscopy. <i>Macromolecular Rapid Communications</i> , <b>2011</b> , 32, 679-83   | 4.8  | 29  |
| 201         | Macrocyclic Core Phosphorus Dendrimers Covered on the Surface by N,P Ligands. <i>European Journal of Organic Chemistry</i> , <b>2011</b> , 2011, 1256-1265                                                  | 3.2  | 13  |
| 200         | Interaction of cationic phosphorus dendrimers (CPD) with charged and neutral lipid membranes. <i>Colloids and Surfaces B: Biointerfaces</i> , <b>2011</b> , 82, 8-12                                        | 6    | 40  |
| 199         | Specific vapor sorption properties of phosphorus-containing dendrimers. <i>Journal of Colloid and Interface Science</i> , <b>2011</b> , 360, 204-10                                                         | 9.3  | 11  |
| 198         | A phosphorus-based dendrimer targets inflammation and osteoclastogenesis in experimental arthritis. <i>Science Translational Medicine</i> , <b>2011</b> , 3, 81ra35                                         | 17.5 | 172 |
| 197         | Dendrimers and nanotubes: a fruitful association. <i>Chemical Society Reviews</i> , <b>2010</b> , 39, 2034-47                                                                                               | 58.5 | 89  |

#### (2009-2010)

| 196 | Synthesis of a fluorescent cationic phosphorus dendrimer and preliminary biological studies of its interaction with DNA. <i>Nucleosides, Nucleotides and Nucleic Acids</i> , <b>2010</b> , 29, 155-67                        | 1.4           | 25  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----|
| 195 | Polyelectrolyte layer-by-layer deposition in cylindrical nanopores. ACS Nano, <b>2010</b> , 4, 3909-20                                                                                                                       | 16.7          | 68  |
| 194 | Selective encapsulation of dye molecules in dendrimer/polymer multilayer microcapsules by DNA hybridization. <i>Journal of Materials Chemistry</i> , <b>2010</b> , 20, 1438                                                  |               | 11  |
| 193 | Biological properties of phosphorus dendrimers. New Journal of Chemistry, 2010, 34, 1512                                                                                                                                     | 3.6           | 78  |
| 192 | An efficient synthesis combining phosphorus dendrimers and 15-membered triolefinic azamacrocycles: towards the stabilization of platinum nanoparticles. <i>New Journal of Chemistry</i> , <b>2010</b> , 34, 547              | 3.6           | 16  |
| 191 | DNA hybridization induced selective encapsulation of small dye molecules in dendrimer based microcapsules. <i>Analyst, The</i> , <b>2010</b> , 135, 2939-44                                                                  | 5             | 9   |
| 190 | Cooperative TPA enhancement via through-space interactions in organic nanodots built from dipolar chromophores <b>2010</b> ,                                                                                                 |               | 3   |
| 189 | Time evolution of the aggregation process of peptides involved in neurodegenerative diseases and preventing aggregation effect of phosphorus dendrimers studied by EPR. <i>Biomacromolecules</i> , <b>2010</b> , 11, 3014-21 | 6.9           | 31  |
| 188 | Phosphorus dendrimers and dendrons functionalized with the cage ligand tris(1,2-dimethylhydrazino)diphosphane. <i>Heteroatom Chemistry</i> , <b>2010</b> , 21, 290-297                                                       | 1.2           | 5   |
| 187 | Design of Bisphosphonate-Terminated Dendrimers. <i>European Journal of Organic Chemistry</i> , <b>2010</b> , 2010, 2759-2767                                                                                                 | 3.2           | 19  |
| 186 | Clage-LikelPhosphines: Design and Catalytic Properties. Advanced Synthesis and Catalysis, 2010,352, 2341-2358                                                                                                                | 5.6           | 30  |
| 185 | THF-induced stiffening of polyelectrolyte/phosphorus dendrimer multilayer microcapsules. <i>Polymer</i> , <b>2010</b> , 51, 4525-4529                                                                                        | 3.9           | 13  |
| 184 | Multivalent catanionic GalCer analogs derived from first generation dendrimeric phosphonic acids. <i>Bioorganic and Medicinal Chemistry</i> , <b>2010</b> , 18, 242-8                                                        | 3.4           | 36  |
| 183 | Phosphorus dendrimers as viewed by 31P NMR spectroscopy; synthesis and characterization. <i>Comptes Rendus Chimie</i> , <b>2010</b> , 13, 1006-1027                                                                          | 2.7           | 26  |
| 182 | Designing dendrimers for ocular drug delivery. European Journal of Medicinal Chemistry, 2010, 45, 326-2                                                                                                                      | <b>34</b> 6.8 | 135 |
| 181 | Synthesis and characterization of phosphorus-containing dendrimers bearing rhodamine derivatives as terminal groups. <i>Arkivoc</i> , <b>2010</b> , 2010, 318-327                                                            | 0.9           | 7   |
| 180 | Anti-inflammatory and immunosuppressive activation of human monocytes by a bioactive dendrimer. <i>Journal of Leukocyte Biology</i> , <b>2009</b> , 85, 553-62                                                               | 6.5           | 79  |
| 179 | Multicharged and/or water-soluble fluorescent dendrimers: properties and uses. <i>Chemistry - A European Journal</i> , <b>2009</b> , 15, 9270-85                                                                             | 4.8           | 79  |

| 178 | gem-Bisphosphonate-Ended Group Dendrimers: Design and Gadolinium Complexing Properties. <i>European Journal of Organic Chemistry</i> , <b>2009</b> , 2009, 4290-4299                                                              | 3.2  | 11  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 177 | Cooperative Two-Photon Absorption Enhancement by Through-Space Interactions in Multichromophoric Compounds. <i>Angewandte Chemie</i> , <b>2009</b> , 121, 8847-8850                                                               | 3.6  | 14  |
| 176 | Cooperative two-photon absorption enhancement by through-space interactions in multichromophoric compounds. <i>Angewandte Chemie - International Edition</i> , <b>2009</b> , 48, 8691-4                                           | 16.4 | 63  |
| 175 | First phosphorous d-xylose-derived glycodendrimers. <i>Tetrahedron Letters</i> , <b>2009</b> , 50, 1902-1905                                                                                                                      | 2    | 19  |
| 174 | Efficient synthesis of phosphorus-containing dendrimers capped with isosteric functions of amino-bismethylene phosphonic acids. <i>Tetrahedron Letters</i> , <b>2009</b> , 50, 2078-2082                                          | 2    | 30  |
| 173 | Design of phosphonium ended dendrimers bearing functionalized amines. <i>Tetrahedron Letters</i> , <b>2009</b> , 50, 4870-4873                                                                                                    | 2    | 4   |
| 172 | Dendrimers ended by non-symmetrical azadiphosphonate groups: synthesis and immunological properties. <i>Bioorganic and Medicinal Chemistry Letters</i> , <b>2009</b> , 19, 3963-6                                                 | 2.9  | 34  |
| 171 | The detection of DNA hybridization on phosphorus dendrimer multilayer films by surface plasmon field enhanced-fluorescence spectroscopy. <i>Langmuir</i> , <b>2009</b> , 25, 13680-4                                              | 4    | 38  |
| 170 | Regulatory activity of azabisphosphonate-capped dendrimers on human CD4+ T cell proliferation enhances ex-vivo expansion of NK cells from PBMCs for immunotherapy. <i>Journal of Translational Medicine</i> , <b>2009</b> , 7, 82 | 8.5  | 59  |
| 169 | Localized surface plasmon resonance coupling in Au nanoparticles/phosphorus dendrimer multilayer thin films fabricated by layer-by-layer self-assembly method. <i>Journal of Materials Chemistry</i> , <b>2009</b> , 19, 2006     |      | 36  |
| 168 | Interactions between dendrimers and heparin and their implications for the anti-prion activity of dendrimers. <i>New Journal of Chemistry</i> , <b>2009</b> , 33, 1087                                                            | 3.6  | 46  |
| 167 | Polycationic phosphorus dendrimers: synthesis, characterization, study of cytotoxicity, complexation of DNA, and transfection experiments. <i>New Journal of Chemistry</i> , <b>2009</b> , 33, 318-326                            | 3.6  | 57  |
| 166 | Dendrimers and nanomedicine: multivalency in action. New Journal of Chemistry, 2009, 33, 1809                                                                                                                                     | 3.6  | 164 |
| 165 | Dendritic structures within dendritic structures: dendrimer-induced formation and self-assembly of nanoparticle networks. <i>Nanoscale</i> , <b>2009</b> , 1, 233-7                                                               | 7.7  | 36  |
| 164 | Grafting of water-soluble phosphines to dendrimers and their use in catalysis: positive dendritic effects in aqueous media. <i>Dalton Transactions</i> , <b>2009</b> , 4432-4                                                     | 4.3  | 71  |
| 163 | Phosphonate terminated PPH dendrimers: influence of pendant alkyl chains on the in vitro anti-HIV-1 properties. <i>Organic and Biomolecular Chemistry</i> , <b>2009</b> , 7, 3491-8                                               | 3.9  | 36  |
| 162 | Customized multiphotonics nanotools for bioapplications: soft organic nanodots as an eco-friendly alternative to quantum dots <b>2009</b> ,                                                                                       |      | 4   |
| 161 | Cationic and fluorescent "Janus" dendrimers. <i>Organic Letters</i> , <b>2008</b> , 10, 4751-4                                                                                                                                    | 6.2  | 63  |

| 160 | Dendrimeric phosphines in asymmetric catalysis. Chemical Society Reviews, 2008, 37, 56-67                                                                                                                                                     | 58.5                 | 138 |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----|
| 159 | Palladium(0) nanoparticles stabilized by phosphorus dendrimers containing coordinating 15-membered triolefinic macrocycles in periphery. <i>Langmuir</i> , <b>2008</b> , 24, 2090-101                                                         | 4                    | 79  |
| 158 | Synthesis of Dendrimers Terminated by Bis(diphenylphosphinomethyl)amino Ligands and Use of Their Palladium Complexes for Catalyzing Cla Cross-Coupling Reactions. <i>Organometallics</i> , <b>2008</b> , 27, 206                              | 6 <sup>-3</sup> 2873 | 45  |
| 157 | Thiazolyl Phosphine Ligands for Copper-Catalyzed Arylation and Vinylation of Nucleophiles in Organic and Aqueous Media. <i>Organometallics</i> , <b>2008</b> , 27, 5733-5736                                                                  | 3.8                  | 28  |
| 156 | Detection of TNT using a sensitive two-photon organic dendrimer for remote sensing. <i>Nanotechnology</i> , <b>2008</b> , 19, 115502                                                                                                          | 3.4                  | 25  |
| 155 | Brilliant organic nanodots: novel nano-objects for bionanophotonics 2008,                                                                                                                                                                     |                      | 9   |
| 154 | Bioactive multilayer thin films of charged N,N-disubstituted hydrazine phosphorus dendrimers fabricated by layer-by-layer self-assembly. <i>Thin Solid Films</i> , <b>2008</b> , 516, 1256-1264                                               | 2.2                  | 28  |
| 153 | Functional quantum-dot/dendrimer nanotubes for sensitive detection of DNA hybridization. <i>Small</i> , <b>2008</b> , 4, 566-71                                                                                                               | 11                   | 75  |
| 152 | Tailored control and optimisation of the number of phosphonic acid termini on phosphorus-containing dendrimers for the ex-vivo activation of human monocytes. <i>Chemistry - A European Journal</i> , <b>2008</b> , 14, 4836-50               | 4.8                  | 93  |
| 151 | Dendrimers and DNA: combinations of two special topologies for nanomaterials and biology. <i>Chemistry - A European Journal</i> , <b>2008</b> , 14, 7422-32                                                                                   | 4.8                  | 118 |
| 150 | Optical properties of hybrid dendritic-mesoporous titania nanocomposite films. <i>Chemistry - A European Journal</i> , <b>2008</b> , 14, 7658-69                                                                                              | 4.8                  | 39  |
| 149 | Developing the Kharasch Reaction in Aqueous Media: Dinuclear Group 8 and 9 Catalysts Containing the Bridging Cage Ligand Tris(1,2-dimethylhydrazino)diphosphane. <i>European Journal of Inorganic Chemistry</i> , <b>2008</b> , 2008, 786-794 | 2.3                  | 33  |
| 148 | Efficient Phosphorus Catalysts for the Halogen-Exchange (Halex) Reaction. <i>Advanced Synthesis and Catalysis</i> , <b>2008</b> , 350, 2677-2682                                                                                              | 5.6                  | 26  |
| 147 | Organic nanodots for multiphotonics: synthesis and photophysical studies. <i>New Journal of Chemistry</i> , <b>2007</b> , 31, 1354                                                                                                            | 3.6                  | 59  |
| 146 | Synthesis and properties of dendrimers possessing the same fluorophore(s) located either peripherally or off-center. <i>Journal of Organic Chemistry</i> , <b>2007</b> , 72, 8707-15                                                          | 4.2                  | 60  |
| 145 | Multiplication of human natural killer cells by nanosized phosphonate-capped dendrimers.  Angewandte Chemie - International Edition, 2007, 46, 2523-6                                                                                         | 16.4                 | 124 |
| 144 | Multiplication of Human Natural Killer Cells by Nanosized Phosphonate-Capped Dendrimers. <i>Angewandte Chemie</i> , <b>2007</b> , 119, 2575-2578                                                                                              | 3.6                  | 10  |
| 143 | Metallated Phthalocyanines as the Core of Dendrimers                                                                                                                                                                                          | 2.3                  | 24  |

| 142 | EPR study of the interactions between dendrimers and peptides involved in Alzheimer's and prion diseases. <i>Macromolecular Bioscience</i> , <b>2007</b> , 7, 1065-74                                                                                                                  | 5.5  | 71  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 141 | Reduced number of steps for the synthesis of dense and highly functionalized dendrimers. <i>Tetrahedron Letters</i> , <b>2007</b> , 48, 579-583                                                                                                                                        | 2    | 17  |
| 140 | New phosphorus dendrimers with chiral ferrocenyl phosphine-thioether ligands on the periphery for asymmetric catalysis. <i>Journal of Organometallic Chemistry</i> , <b>2007</b> , 692, 1064-1073                                                                                      | 2.3  | 65  |
| 139 | Decorating step-by-step and independently the surface and the core of dendrons. <i>Journal of Organometallic Chemistry</i> , <b>2007</b> , 692, 1928-1939                                                                                                                              | 2.3  | 16  |
| 138 | Synthesis and application of phosphorus dendrimer immobilized azabis(oxazolines). <i>Organic Letters</i> , <b>2007</b> , 9, 2895-8                                                                                                                                                     | 6.2  | 80  |
| 137 | Influence of phosphorus dendrimers on the aggregation of the prion peptide PrP 185-208. <i>Biochemical and Biophysical Research Communications</i> , <b>2007</b> , 364, 20-5                                                                                                           | 3.4  | 62  |
| 136 | Influence of cationic phosphorus dendrimers on the surfactant-induced synthesis of mesostructured nanoporous silica. <i>New Journal of Chemistry</i> , <b>2007</b> , 31, 1259-1263                                                                                                     | 3.6  | 17  |
| 135 | Water-soluble dendrimeric two-photon tracers for in vivo imaging. <i>Angewandte Chemie - International Edition</i> , <b>2006</b> , 45, 4645-8                                                                                                                                          | 16.4 | 143 |
| 134 | First Example of Dendrons as Topological Amplifiers. <i>European Journal of Inorganic Chemistry</i> , <b>2006</b> , 2006, 2556-2560                                                                                                                                                    | 2.3  | 9   |
| 133 | Water-Soluble Dendrimeric Two-Photon Tracers for In Vivo Imaging. <i>Angewandte Chemie</i> , <b>2006</b> , 118, 4761-4764                                                                                                                                                              | 3.6  | 20  |
| 132 | Water-Soluble Group 8 and 9 Transition Metal Complexes Containing a Trihydrazinophosphaadamantane Ligand: Catalytic Applications in Isomerization of Allylic Alcohols and Cycloisomerization of (Z)-Enynols in Aqueous Medium. <i>Advanced Synthesis and Catalysis</i> , <b>2006</b> , | 5.6  | 79  |
| 131 | 348, 1671-1679  Design of phosphorylated dendritic architectures to promote human monocyte activation. <i>FASEB Journal</i> , <b>2006</b> , 20, 2339-51                                                                                                                                | 0.9  | 121 |
| 130 | Microstructured liposome array. <i>Bioconjugate Chemistry</i> , <b>2006</b> , 17, 245-7                                                                                                                                                                                                | 6.3  | 34  |
| 129 | A modular approach to two-photon absorbing organic nanodots: brilliant dendrimers as an alternative to semiconductor quantum dots?. <i>Chemical Communications</i> , <b>2006</b> , 915-7                                                                                               | 5.8  | 94  |
| 128 | Effect of Dendrimer Generation on the Assembly and Mechanical Properties of DNA/Phosphorus Dendrimer Multilayer Microcapsules. <i>Macromolecules</i> , <b>2006</b> , 39, 5479-5483                                                                                                     | 5.5  | 29  |
| 127 | Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes. <i>Analytical Chemistry</i> , <b>2006</b> , 78, 7346-50                                                                                                                   | 7.8  | 137 |
| 126 | Enhanced catalytic properties of copper in O- and N-arylation and vinylation reactions, using phosphorus dendrimers as ligands. <i>Journal of the American Chemical Society</i> , <b>2006</b> , 128, 15990-1                                                                           | 16.4 | 173 |
| 125 | Design of tailored multi-charged phosphorus surface-block dendrimers. <i>New Journal of Chemistry</i> , <b>2006</b> , 30, 1731                                                                                                                                                         | 3.6  | 22  |

#### (2004-2006)

| 124         | Phosphorus dendritic architectures: polyanionic and polycationic derivatives. <i>Polymer International</i> , <b>2006</b> , 55, 1155-1160                                                                                             | 3.3  | 16  |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 123         | Synthesis of phosphorus dendrimers bearing chromophoric end groups: toward organic blue light-emitting diodes. <i>Tetrahedron</i> , <b>2006</b> , 62, 11891-11899                                                                    | 2.4  | 49  |
| 122         | Uses of Dendrimers for DNA Microarrays. <i>Sensors</i> , <b>2006</b> , 6, 901-914                                                                                                                                                    | 3.8  | 46  |
| 121         | Assembly and mechanical properties of phosphorus dendrimer/polyelectrolyte multilayer microcapsules. <i>Langmuir</i> , <b>2005</b> , 21, 7200-6                                                                                      | 4    | 52  |
| <b>12</b> 0 | Phosphorus dendrimers for the controlled elaboration of organicIhorganic materials. <i>Journal of Materials Chemistry</i> , <b>2005</b> , 15, 3643                                                                                   |      | 27  |
| 119         | The behavior of Au55 nanoclusters on and in thiol-terminated dendrimer monolayers. <i>Small</i> , <b>2005</b> , 1, 73-5                                                                                                              | 11   | 27  |
| 118         | Formation of dendrimer nanotubes by layer-by-layer deposition. Small, 2005, 1, 99-102                                                                                                                                                | 11   | 84  |
| 117         | Water-soluble phosphorus-containing dendrimers. <i>Progress in Polymer Science</i> , <b>2005</b> , 30, 491-505                                                                                                                       | 29.6 | 121 |
| 116         | Resonating piezoelectric membranes for microelectromechanically based bioassay: detection of streptavidingold nanoparticles interaction with biotinylated DNA. <i>Sensors and Actuators B: Chemical</i> , <b>2005</b> , 110, 125-136 | 8.5  | 58  |
| 115         | A third generation chiral phosphorus-containing dendrimer as ligand in Pd-catalyzed asymmetric allylic alkylation. <i>Tetrahedron Letters</i> , <b>2005</b> , 46, 6503-6506                                                          | 2    | 45  |
| 114         | Phosphorus dendrimers possessing metallic groups in their internal structure (core or branches): Syntheses and properties. <i>Coordination Chemistry Reviews</i> , <b>2005</b> , 249, 1917-1926                                      | 23.2 | 44  |
| 113         | Characterization of dendrimers. Advanced Drug Delivery Reviews, 2005, 57, 2130-46                                                                                                                                                    | 18.5 | 224 |
| 112         | Octasubstituted metal-free phthalocyanine as core of phosphorus dendrimers: a probe for the properties of the internal structure. <i>Journal of the American Chemical Society</i> , <b>2005</b> , 127, 15762-70                      | 16.4 | 81  |
| 111         | Synthesis and Characterization of Phosphorus Dendrimers Containing Long, Conjugated Branches. <i>European Journal of Organic Chemistry</i> , <b>2005</b> , 2005, 1340-1347                                                           | 3.2  | 6   |
| 110         | Dendritic catanionic assemblies: in vitro anti-HIV activity of phosphorus-containing dendrimers bearing galbeta1cer analogues. <i>ChemBioChem</i> , <b>2005</b> , 6, 2207-13                                                         | 3.8  | 72  |
| 109         | Organometallic Derivatives at the Core of Phosphorus-Containing Dendrimers. <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , <b>2005</b> , 631, 2881-2887                                                                 | 1.3  | 24  |
| 108         | Synthesis and reactivity of small phosphorus-containing dendritic wedges (dendrons). <i>Arkivoc</i> , <b>2005</b> , 2002, 151-160                                                                                                    | 0.9  | 5   |
| 107         | Cationic phosphorus-containing dendrimers reduce prion replication both in cell culture and in mice infected with scrapie. <i>Journal of General Virology</i> , <b>2004</b> , 85, 1791-1799                                          | 4.9  | 151 |

| 106 | Nanometric sponges made of water-soluble hydrophobic dendrimers. <i>Journal of the American Chemical Society</i> , <b>2004</b> , 126, 2304-5                                                                                    | 16.4         | 103 |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----|
| 105 | Synthesis and Core and Surface Reactivity of Phosphorus-Based Dendrons. <i>European Journal of Inorganic Chemistry</i> , <b>2004</b> , 2004, 2459-2466                                                                          | 2.3          | 11  |
| 104 | A new way for the internal functionalization of dendrimers. <i>Tetrahedron Letters</i> , <b>2004</b> , 45, 3019-3022                                                                                                            | 2            | 20  |
| 103 | Giant dendrimer-like particles from nanolatexes. Chemical Communications, 2004, 1816-7                                                                                                                                          | 5.8          | 38  |
| 102 | Does charge carrier dimensionality increase in mixed-valence salts of tetrathiafulvalene-terminated dendrimers?. <i>Organic Letters</i> , <b>2004</b> , 6, 2109-12                                                              | 6.2          | 22  |
| 101 | Self-assembly of water-soluble dendrimers into thermoreversible hydrogels and macroscopic fibers. <i>Langmuir</i> , <b>2004</b> , 20, 9348-53                                                                                   | 4            | 41  |
| 100 | Synthesis of hybrid dendrimer-star polymers by the RAFT process. <i>Chemical Communications</i> , <b>2004</b> , 211                                                                                                             | <b>0</b> 518 | 63  |
| 99  | Nanomaterials based on phosphorus dendrimers. <i>Accounts of Chemical Research</i> , <b>2004</b> , 37, 341-8                                                                                                                    | 24.3         | 170 |
| 98  | Thioacylation reactions for the surface functionalization of phosphorus-containing dendrimers. <i>Organic Letters</i> , <b>2004</b> , 6, 1309-12                                                                                | 6.2          | 12  |
| 97  | Optimisation of dendrimer-mediated gene transfer by anionic oligomers. <i>Journal of Gene Medicine</i> , <b>2003</b> , 5, 61-71                                                                                                 | 3.5          | 82  |
| 96  | Dendrimer Design: How to Circumvent the Dilemma of a Reduction of Steps or an Increase of Function Multiplicity?. <i>Angewandte Chemie</i> , <b>2003</b> , 115, 1866-1870                                                       | 3.6          | 8   |
| 95  | Dendrimer design: how to circumvent the dilemma of a reduction of steps or an increase of function multiplicity?. <i>Angewandte Chemie - International Edition</i> , <b>2003</b> , 42, 1822-6                                   | 16.4         | 87  |
| 94  | Pseudo-halogen behavior of thiophosphoryl azides as a tool for the functionalization of phosphorus macrocycles. <i>Tetrahedron Letters</i> , <b>2003</b> , 44, 7007-7010                                                        | 2            | 7   |
| 93  | Surface, core, and structure modifications of phosphorus-containing dendrimers. Influence on the thermal stability. <i>Tetrahedron</i> , <b>2003</b> , 59, 3965-3973                                                            | 2.4          | 40  |
| 92  | Fluorinated dendrimers. Current Opinion in Colloid and Interface Science, 2003, 8, 282-295                                                                                                                                      | 7.6          | 55  |
| 91  | "Lego" chemistry for the straightforward synthesis of dendrimers. <i>Journal of Organic Chemistry</i> , <b>2003</b> , 68, 6043-6                                                                                                | 4.2          | 78  |
| 90  | Dendrislides, dendrichips: a simple chemical functionalization of glass slides with phosphorus dendrimers as an effective means for the preparation of biochips. <i>New Journal of Chemistry</i> , <b>2003</b> , 27, 1713-1719  | 3.6          | 81  |
| 89  | Water-soluble polycationic dendrimers with a phosphoramidothioate backbone: preliminary studies of cytotoxicity and oligonucleotide/plasmid delivery in human cell culture. <i>Oligonucleotides</i> , <b>2003</b> , 13, 193-205 |              | 109 |

### (2001-2003)

| 88 | Dendrimeric coating of glass slides for sensitive DNA microarrays analysis. <i>Nucleic Acids Research</i> , <b>2003</b> , 31, e88                                                                     | 20.1              | 163 |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----|
| 87 | Synthesis and photochemical behavior of phosphorus dendrimers containing azobenzene units within the branches and/or on the surface. <i>Chemistry - A European Journal</i> , <b>2002</b> , 8, 2172-83 | 4.8               | 35  |
| 86 | New phosphorus-containing dendrimers with ferrocenyl units in each layer. <i>Comptes Rendus Chimie</i> , <b>2002</b> , 5, 309-318                                                                     | 2.7               | 20  |
| 85 | Synthesis of dendrimers with phosphine end groups at each generation. <i>Journal of Organometallic Chemistry</i> , <b>2002</b> , 643-644, 112-124                                                     | 2.3               | 5   |
| 84 | Organometallic Derivatives of Phosphorus-containing Dendrimers. Synthesis, Properties and Applications in Catalysis <i>Current Organic Chemistry</i> , <b>2002</b> , 6, 739-774                       | 1.7               | 86  |
| 83 | Iminophosphine Palladium Complexes in Catalytic Stille Coupling Reactions:□From Monomers to Dendrimers. <i>Organometallics</i> , <b>2002</b> , 21, 4680-4687                                          | 3.8               | 62  |
| 82 | Behavior of an Optically Active Ferrocene Chiral Shell Located within Phosphorus-Containing Dendrimers. <i>Organometallics</i> , <b>2002</b> , 21, 1891-1897                                          | 3.8               | 54  |
| 81 | Phosphorus-containing dendrimers bearing galactosylceramide analogs: self-assembly properties. <i>Chemical Communications</i> , <b>2002</b> , 1864-5                                                  | 5.8               | 42  |
| 80 | The specific contribution of phosphorus in dendrimer chemistry. Chemical Communications, 2002, 2929-                                                                                                  | - <b>45</b> 8     | 100 |
| 79 | Phosphorus dendrimers as new tools to deliver active substances. <i>Tetrahedron Letters</i> , <b>2001</b> , 42, 3587-3                                                                                | 3590              | 33  |
| 78 | Immobilization of Redox-Active Ligands on an Electrode: The Dendrimer Route. <i>Angewandte Chemie</i> , <b>2001</b> , 113, 230-233                                                                    | 3.6               | 13  |
| 77 | Organophosphorus Dendrimers as New Gelators for Hydrogels. <i>Angewandte Chemie</i> , <b>2001</b> , 113, 2696-2                                                                                       | 6 <del>3</del> .Ø | 18  |
| 76 | Synthesis and characterization of linear, hyperbranched, and dendrimer-like polymers constituted of the same repeating unit. <i>Chemistry - A European Journal</i> , <b>2001</b> , 7, 3095-105        | 4.8               | 74  |
| 75 | Immobilization of Redox-Active Ligands on an Electrode: The Dendrimer Route. <i>Angewandte Chemie - International Edition</i> , <b>2001</b> , 40, 224-227                                             | 16.4              | 98  |
| 74 | Organophosphorus Dendrimers as New Gelators for Hydrogels. <i>Angewandte Chemie - International Edition</i> , <b>2001</b> , 40, 2626-2629                                                             | 16.4              | 98  |
| 73 | New chiral phosphorus-containing dendrimers with ferrocenes on the periphery. <i>Tetrahedron</i> , <b>2001</b> , 57, 2521-2536                                                                        | 2.4               | 54  |
| 72 | First divergent strategy using two AB(2) unprotected monomers for the rapid synthesis of dendrimers. <i>Journal of the American Chemical Society</i> , <b>2001</b> , 123, 6698-9                      | 16.4              | 81  |
| 71 | Segmental Mobility in Phosphorus-Containing Dendrimers. Studies by Fluorescent Spectroscopy. <i>Macromolecules</i> , <b>2001</b> , 34, 5599-5606                                                      | 5.5               | 60  |

| 70 | . Chemistry - A European Journal, <b>2000</b> , 6, 1693-1697                                                                                                                                                                                                                        | 4.8  | 22  |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 69 | New Mesotextured Hybrid Materials Made from Assemblies of Dendrimers and Titanium(IV)-Oxo-Organo Clusters. <i>Angewandte Chemie</i> , <b>2000</b> , 112, 4419-4424                                                                                                                  | 3.6  | 12  |
| 68 | New Mesotextured Hybrid Materials Made from Assemblies of Dendrimers and Titanium(IV)-Oxo-Organo Clusters. <i>Angewandte Chemie - International Edition</i> , <b>2000</b> , 39, 4249-4254                                                                                           | 16.4 | 97  |
| 67 | Michael-Type Addition of Amines to the Vinyl Core of Dendrons Application to the Synthesis of Multidendritic Systems. <i>European Journal of Organic Chemistry</i> , <b>2000</b> , 2000, 3555-3568                                                                                  | 3.2  | 26  |
| 66 | Dendrimers with N,N-Disubstituted Hydrazines as End Groups, Useful Precursors for the Synthesis of Water-Soluble Dendrimers Capped with Carbohydrate, Carboxylic or Boronic Acid Derivatives. <i>Tetrahedron</i> , <b>2000</b> , 56, 6269-6277                                      | 2.4  | 31  |
| 65 | MALDI TOF mass spectrometry for the characterization of phosphorus-containing dendrimers. Scope and limitations. <i>Analytical Chemistry</i> , <b>2000</b> , 72, 5097-105                                                                                                           | 7.8  | 79  |
| 64 | Rapid Synthesis of Phosphorus-Containing Dendrimers with Controlled Molecular Architectures: First Example of Surface-Block, Layer-Block, and Segment-Block Dendrimers Issued from the Same Dendron. <i>Journal of the American Chemical Society</i> , <b>2000</b> , 122, 2499-2511 | 16.4 | 132 |
| 63 | Phosphorus-Containing Dendrimers with Ferrocenyl Units at the Core, within the Branches, and on the Periphery. <i>Macromolecules</i> , <b>2000</b> , 33, 7328-7336                                                                                                                  | 5.5  | 67  |
| 62 | Electrogenerated poly(dendrimers) containing conjugated poly(thiophene) chains. <i>Chemical Communications</i> , <b>2000</b> , 507-508                                                                                                                                              | 5.8  | 35  |
| 61 | OrganicIhorganic Hybrid Materials Incorporating Phosphorus-Containing Dendrimers. <i>Chemistry of Materials</i> , <b>2000</b> , 12, 3848-3856                                                                                                                                       | 9.6  | 46  |
| 60 | Phosphorus-Containing Dendrimers and Their Transition Metal Complexes as Efficient Recoverable Multicenter Homogeneous Catalysts in Organic Synthesis. <i>Organometallics</i> , <b>2000</b> , 19, 4025-4029                                                                         | 3.8  | 116 |
| 59 | Choice of strategies for the divergent synthesis of phosphorus-containing dendrons, depending on the function located at the core. <i>New Journal of Chemistry</i> , <b>2000</b> , 24, 561-566                                                                                      | 3.6  | 12  |
| 58 | Naked Au55 clusters: dramatic effect of a thiol-terminated dendrimer. <i>Chemistry - A European Journal</i> , <b>2000</b> , 6, 1693-7                                                                                                                                               | 4.8  | 68  |
| 57 | Chemistry in the internal voids of dendrimers. <i>Coordination Chemistry Reviews</i> , <b>1999</b> , 190-192, 3-18                                                                                                                                                                  | 23.2 | 26  |
| 56 | N-Thiophosphorylated and N-Phosphorylated Iminophosphoranes [R3P=N <b>P</b> (X)R?2; ☐ O, S] as Models for Dendrimers: Synthesis, Reactivity and Crystal Structures. <i>European Journal of Inorganic Chemistry</i> , <b>1999</b> , 1999, 601-611                                    | 2.3  | 30  |
| 55 | Grafting of Tetraazamacrocycles on the Surface of Phosphorus-Containing Dendrimers. <i>European Journal of Organic Chemistry</i> , <b>1999</b> , 1999, 1701-1708                                                                                                                    | 3.2  | 16  |
| 54 | Preparation of Water-Soluble Cationic Phosphorus-Containing Dendrimers as DNA Transfecting Agents. <i>Chemistry - A European Journal</i> , <b>1999</b> , 5, 3644-3650                                                                                                               | 4.8  | 174 |
| 53 | Dendrimers containing heteroatoms (si, p, B, ge, or bi). <i>Chemical Reviews</i> , <b>1999</b> , 99, 845-80                                                                                                                                                                         | 68.1 | 495 |

| 52 | Dendrimers Containing Zwitterionic [Phosphonium Anionic Zirconocene(IV)] Complexes.  Organometallics, 1999, 18, 1580-1582                                                                     | 3.8   | 41  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|
| 51 | Phosphine-terminated dendrimers. <i>Coordination Chemistry Reviews</i> , <b>1998</b> , 178-180, 793-821                                                                                       | 23.2  | 53  |
| 50 | Regioselective Gold Complexation within the Cascade Structure of Phosphorus-Containing Dendrimers. <i>Chemistry - A European Journal</i> , <b>1998</b> , 4, 2031-2036                         | 4.8   | 73  |
| 49 | Chemistry within Megamolecules: Regiospecific Functionalization after Construction of Phosphorus Dendrimers. <i>Journal of the American Chemical Society</i> , <b>1998</b> , 120, 13070-13082 | 16.4  | 67  |
| 48 | Phosphorus-Containing Dendrimers: ©Chemoselective Functionalization of Internal Layers. <i>Journal of the American Chemical Society</i> , <b>1998</b> , 120, 4029-4030                        | 16.4  | 64  |
| 47 | Divergent Approaches to Phosphorus-Containing Dendrimers and their Functionalization. <i>Topics in Current Chemistry</i> , <b>1998</b> , 79-124                                               |       | 67  |
| 46 | Application of the Horner-Wadsworth-Emmons Reaction to the Functionalization of Dendrimers: Synthesis of Amino Acid Terminated Dendrimers. <i>Synthesis</i> , <b>1997</b> , 1997, 1199-1207   | 2.9   | 21  |
| 45 | SYNTHESIS AND REACTIVITY OF DENDRIMERS BASed ON PHOSPHORYL (P=O) GROUPS. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> , <b>1997</b> , 123, 21-34                            | 1     | 18  |
| 44 | Versatile Complexation Ability of Very Large Phosphino-Terminated Dendrimers. <i>Inorganic Chemistry</i> , <b>1997</b> , 36, 1939-1945                                                        | 5.1   | 62  |
| 43 | Ruthenium Hydride and Dihydrogen Complexes with Dendrimeric Multidentate Ligands. <i>Organometallics</i> , <b>1997</b> , 16, 3489-3497                                                        | 3.8   | 50  |
| 42 | Phosphate-, Phosphite-, Ylide-, and Phosphonate-Terminated Dendrimers. <i>Journal of Organic Chemistry</i> , <b>1997</b> , 62, 4834-4841                                                      | 4.2   | 29  |
| 41 | Large Dipole Moments of Phosphorus-Containing Dendrimers. <i>Macromolecules</i> , <b>1997</b> , 30, 7335-7337                                                                                 | 5.5   | 139 |
| 40 | Regioselective Stepwise Growth of Dendrimer Units in the Internal Voids of a Main Dendrimer. <i>Science</i> , <b>1997</b> , 277, 1981-1984                                                    | 33.3  | 155 |
| 39 | Synthesis of bowl-shaped dendrimers from generation 1 to generation 8. <i>Journal of Organometallic Chemistry</i> , <b>1997</b> , 529, 51-58                                                  | 2.3   | 131 |
| 38 | Chemoselective Polyalkylations of Phosphorus-Containing Dendrimers. <i>Angewandte Chemie International Edition in English</i> , <b>1997</b> , 36, 596-599                                     |       | 65  |
| 37 | Chemoselektive Polyalkylierungen phosphorhaltiger Dendrimere. <i>Angewandte Chemie</i> , <b>1997</b> , 109, 613-0                                                                             | 63.76 | 7   |
| 36 | Complexation properties of polyazaphosphorus macrocycles. <i>Inorganica Chimica Acta</i> , <b>1996</b> , 246, 47-52                                                                           | 2.7   | 2   |
| 35 | Phosphorus-Containing Dendrimers. Easy Access to New Multi-Difunctionalized Macromolecules.<br>Journal of Organic Chemistry, <b>1996</b> , 61, 3799-3805                                      | 4.2   | 57  |

| 34 | Hexamethylhydrazinocyclotriphosphazene N3P3(NMeNH2)6: Starting reagent for the synthesis of multifunctionalized species, macrocycles, and small dendrimers <b>1996</b> , 7, 149-154                                                           |               | 25  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----|
| 33 | Phosphorus-Containing Dendrimers: Synthesis of Macromolecules with Multiple Tri- and Tetrafunctionalization. <i>Chemistry - A European Journal</i> , <b>1996</b> , 2, 1417-1426                                                               | 4.8           | 66  |
| 32 | Specific functionalization on the surface of dendrimers. <i>Tetrahedron Letters</i> , <b>1996</b> , 37, 9053-9056                                                                                                                             | 2             | 60  |
| 31 | Synthesis of Di- or Tetrafunctionalized Phosphorus Macrocycles. <i>Synthesis</i> , <b>1995</b> , 1995, 952-956                                                                                                                                | 2.9           | 8   |
| 30 | Synthesis and Reactivity of Unusual Phosphorus Dendrimers. A Useful Divergent Growth Approach Up to the Seventh Generation. <i>Journal of the American Chemical Society</i> , <b>1995</b> , 117, 3282-3283                                    | 16.4          | 150 |
| 29 | Polyaminophosphine Containing Dendrimers. Syntheses and Characterization. <i>Journal of the American Chemical Society</i> , <b>1995</b> , 117, 5470-5476                                                                                      | 16.4          | 80  |
| 28 | Dendrimer Surface Chemistry. Facile Route to Polyphosphines and Their Gold Complexes. <i>Journal of the American Chemical Society</i> , <b>1995</b> , 117, 9764-9765                                                                          | 16.4          | 183 |
| 27 | Phosphorylated Hydrazines and Aldehydes as Precursors of Phosphorus-Containing Multimacrocycles. <i>Journal of the American Chemical Society</i> , <b>1995</b> , 117, 1712-1721                                                               | 16.4          | 27  |
| 26 | Molecular Modeling, a Tool for Predicting Structural Effects on the Macrocyclization Reaction between Bis(vinyl or allyl) Dialdehydes and Thiophosphonic Bis(hydrazides). <i>Chemische Berichte</i> , <b>1995</b> , 128, 443-447              |               | 5   |
| 25 | Tricoordinated phosphorus-containing macrocycles: New synthetic strategies. <i>Heteroatom Chemistry</i> , <b>1995</b> , 6, 313-318                                                                                                            | 1.2           | 7   |
| 24 | A General Synthetic Strategy for Neutral Phosphorus-Containing Dendrimers. <i>Angewandte Chemie International Edition in English</i> , <b>1994</b> , 33, 1589-1592                                                                            |               | 254 |
| 23 | Ein allgemeiner Zugang zu neutralen, phosphorhaltigen Dendrimeren. <i>Angewandte Chemie</i> , <b>1994</b> , 106, 1682-1684                                                                                                                    | 3.6           | 36  |
| 22 | Synthesis of Phosphorus-Containing Macrocycles and Cryptands. <i>Chemical Reviews</i> , <b>1994</b> , 94, 1183-121                                                                                                                            | <b>3</b> 68.1 | 164 |
| 21 | New Synthetic Strategies for Phosphorus-Containing Cryptands and the First Phosphorus Spherand Type Compound. <i>Journal of the American Chemical Society</i> , <b>1994</b> , 116, 5007-5008                                                  | 16.4          | 54  |
| 20 | New and efficient syntheses of symmetrical phosphorus-containing cryptands. <i>Journal of the Chemical Society Chemical Communications</i> , <b>1994</b> , 2161                                                                               |               | 18  |
| 19 | Phosphorus-Containing N-Methyleneamine Type Compounds: Synthesis, Structure, and Reactivity. <i>Inorganic Chemistry</i> , <b>1994</b> , 33, 6351-6356                                                                                         | 5.1           | 3   |
| 18 | Synthesis, Structure, and Reactivity of Stable PN Heterocycles with Two and Six Methyleneamine Units: [H2C?N?N(Me)]2 P(S)(Ph) and [H2C?N?N(Me)]6P3N3. <i>Angewandte Chemie International Edition in English</i> , <b>1993</b> , 32, 1477-1479 |               | 20  |
| 17 | Synthese, Struktur und ReaktivitEstabiler PN-Heterocyclen mit zwei und sechs Methylen-amin-Einheiten: [H2C?N?N(Me)]2P(S)(Ph) und [H2C?N?N(Me)]6P3N3. <i>Angewandte Chemie</i> , <b>1993</b> , 105, 1508-1510                                  | 3.6           | 4   |

#### LIST OF PUBLICATIONS

| 16 | Design of new tools for macrocyclic synthesis. Applications to the preparation of polyphosphorus macrocycles. <i>Journal of Organic Chemistry</i> , <b>1992</b> , 57, 970-975                                                           | 4.2  | 37 |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----|
| 15 | Polyazatetraphosphorus P?C and P?N?N macrocycles. <i>Tetrahedron Letters</i> , <b>1991</b> , 32, 203-206                                                                                                                                | 2    | 10 |
| 14 | Polyazaphosphorus macrocycles: Synthesis, reactivity, complexation. <i>Heteroatom Chemistry</i> , <b>1991</b> , 2, 45-54                                                                                                                | 1.2  | 7  |
| 13 | ATTEMPTED SYNTHESIS OF PHOSPHORUS CRYPTANDS. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> , <b>1991</b> , 56, 123-127                                                                                                 | 1    | 3  |
| 12 | Functionalized macrocycles incorporating phosphorus-nitrogen and phosphorus-oxygen bonds. Strategies of synthesis. <i>Inorganic Chemistry</i> , <b>1991</b> , 30, 3365-3367                                                             | 5.1  | 19 |
| 11 | Reactivity of polyaza diphosphorus macrocycles. <i>Inorganic Chemistry</i> , <b>1991</b> , 30, 344-346                                                                                                                                  | 5.1  | 12 |
| 10 | First phosphorus macrocycles incorporating tetrathiafulvalene (TTF) moieties. <i>Tetrahedron Letters</i> , <b>1990</b> , 31, 6343-6346                                                                                                  | 2    | 26 |
| 9  | Polyazaphosphorus macrocycles. Synthetic approaches to symmetric or dissymmetric 18-, 20-, 22-, and 30-membered rings. <i>Journal of the American Chemical Society</i> , <b>1990</b> , 112, 5618-5623                                   | 16.4 | 41 |
| 8  | Facile synthesis of new classes of free and complexed polyaza phosphorus macrocycles. <i>Inorganic Chemistry</i> , <b>1988</b> , 27, 3873-3875                                                                                          | 5.1  | 19 |
| 7  | Photochemical and thermal rearrangement of heavier main-group element azides. <i>Accounts of Chemical Research</i> , <b>1986</b> , 19, 17-23                                                                                            | 24.3 | 46 |
| 6  | Synthesis and structure of the first cyclodiphosphazene. Dimerization of a phosphonitrile :P.tplbond.N. <i>Journal of the American Chemical Society</i> , <b>1984</b> , 106, 6088-6089                                                  | 16.4 | 65 |
| 5  | Reactivite de quelques phosphor(III)adamantanes et de quelques analogues tricycliques. <i>Tetrahedron Letters</i> , <b>1980</b> , 21, 1449-1452                                                                                         | 2    | 30 |
| 4  | Synthesis and Reactions of Heterocyclic Compounds Containing a P-N-N-Linkage. <i>Synthesis</i> , <b>1978</b> , 1978, 557-576                                                                                                            | 2.9  | 15 |
| 3  | Heterocyclic compounds containing phosphorus. Part 30. Synthesis of mixed phosphorohydrazides and of some new mono-, bi-, and tri-cyclic derivatives. <i>Journal of the Chemical Society Perkin Transactions 1</i> , <b>1976</b> , 2093 |      | 14 |
| 2  | Heterocycles contenant du phosphore. XXV - synthese et etude physicochimique de quelques perhydro tetrazaphosphorines-1,2,4,5,3 et de quelques analogues polycycliques <i>Tetrahedron Letters</i> , <b>1975</b> , 16, 1481-1484         | 2    | 7  |
| 1  | Engineered phosphorus dendrimers as powerful non-viral nanoplatforms for gene delivery: a great hope for the future of cancer therapeutics. <i>Exploration of Targeted Anti-tumor Therapy</i> ,50-61                                    | 2.5  | Ο  |