
Jean-Pierre Majoral

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2860338/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dendrimers Containing Heteroatoms (Si, P, B, Ge, or Bi). Chemical Reviews, 1999, 99, 845-880.	47.7	560
2	Construction of iron oxide nanoparticle-based hybrid platforms for tumor imaging and therapy. Chemical Society Reviews, 2018, 47, 1874-1900.	38.1	300
3	A General Synthetic Strategy for Neutral Phosphorus-Containing Dendrimers. Angewandte Chemie International Edition in English, 1994, 33, 1589-1592.	4.4	288
4	Expand classical drug administration ways by emerging routes using dendrimer drug delivery systems: A concise overview. Advanced Drug Delivery Reviews, 2013, 65, 1316-1330.	13.7	271
5	Characterization of dendrimers. Advanced Drug Delivery Reviews, 2005, 57, 2130-2146.	13.7	248
6	A Phosphorus-Based Dendrimer Targets Inflammation and Osteoclastogenesis in Experimental Arthritis. Science Translational Medicine, 2011, 3, 81ra35.	12.4	207
7	Dendrimer Surface Chemistry. Facile Route to Polyphosphines and Their Gold Complexes. Journal of the American Chemical Society, 1995, 117, 9764-9765.	13.7	204
8	Preparation of Water-Soluble Cationic Phosphorus-Containing Dendrimers as DNA Transfecting Agents. Chemistry - A European Journal, 1999, 5, 3644-3650.	3.3	189
9	Synthesis of Phosphorus-Containing Macrocycles and Cryptands. Chemical Reviews, 1994, 94, 1183-1213.	47.7	185
10	Nanomaterials Based on Phosphorus Dendrimers. Accounts of Chemical Research, 2004, 37, 341-348.	15.6	184
11	Enhanced Catalytic Properties of Copper in O- and N-Arylation and Vinylation Reactions, Using Phosphorus Dendrimers as Ligands. Journal of the American Chemical Society, 2006, 128, 15990-15991.	13.7	182
12	Dendrimers and nanomedicine: multivalency in action. New Journal of Chemistry, 2009, 33, 1809.	2.8	176
13	Regioselective Stepwise Growth of Dendrimer Units in the Internal Voids of a Main Dendrimer. Science, 1997, 277, 1981-1984.	12.6	175
14	Dendrimeric coating of glass slides for sensitive DNA microarrays analysis. Nucleic Acids Research, 2003, 31, 88e-88.	14.5	172
15	Cationic phosphorus-containing dendrimers reduce prion replication both in cell culture and in mice infected with scrapie. Journal of General Virology, 2004, 85, 1791-1799.	2.9	172
16	Synthesis and Reactivity of Unusual Phosphorus Dendrimers. A Useful Divergent Growth Approach Up to the Seventh Generation. Journal of the American Chemical Society, 1995, 117, 3282-3283.	13.7	169
17	Dendrimers in combination with natural products and analogues as anti-cancer agents. Chemical Society Reviews, 2018, 47, 514-532.	38.1	156
18	Water-Soluble Dendrimeric Two-Photon Tracers for In Vivo Imaging. Angewandte Chemie - International Edition, 2006, 45, 4645-4648.	13.8	154

#	Article	IF	CITATIONS
19	Rapid Synthesis of Phosphorus-Containing Dendrimers with Controlled Molecular Architectures: First Example of Surface-Block, Layer-Block, and Segment-Block Dendrimers Issued from the Same Dendron. Journal of the American Chemical Society, 2000, 122, 2499-2511.	13.7	152
20	Simultaneous Excitation of Propagating and Localized Surface Plasmon Resonance in Nanoporous Gold Membranes. Analytical Chemistry, 2006, 78, 7346-7350.	6.5	151
21	Large Dipole Moments of Phosphorus-Containing Dendrimers. Macromolecules, 1997, 30, 7335-7337.	4.8	149
22	Designing dendrimers for ocular drug delivery. European Journal of Medicinal Chemistry, 2010, 45, 326-334.	5.5	149
23	Synthesis of bowl-shaped dendrimers from generation 1 to generation 8. Journal of Organometallic Chemistry, 1997, 529, 51-58.	1.8	148
24	Dendrimeric phosphines in asymmetric catalysis. Chemical Society Reviews, 2008, 37, 56-67.	38.1	143
25	Multiplication of Human Natural Killer Cells by Nanosized Phosphonate-Capped Dendrimers. Angewandte Chemie - International Edition, 2007, 46, 2523-2526.	13.8	138
26	Phosphorus-Containing Dendrimers and Their Transition Metal Complexes as Efficient Recoverable Multicenter Homogeneous Catalysts in Organic Synthesis. Organometallics, 2000, 19, 4025-4029.	2.3	136
27	The key role of the scaffold on the efficiency of dendrimer nanodrugs. Nature Communications, 2015, 6, 7722.	12.8	133
28	Design of phosphorylated dendritic architectures to promote human monocyte activation. FASEB Journal, 2006, 20, 2339-2351.	0.5	132
29	"Janus―dendrimers: syntheses and properties. New Journal of Chemistry, 2012, 36, 217-226.	2.8	129
30	Water-soluble phosphorus-containing dendrimers. Progress in Polymer Science, 2005, 30, 491-505.	24.7	125
31	Dendrimers and DNA: Combinations of Two Special Topologies for Nanomaterials and Biology. Chemistry - A European Journal, 2008, 14, 7422-7432.	3.3	125
32	Organocatalysis with dendrimers. Chemical Society Reviews, 2012, 41, 4113.	38.1	124
33	The dendritic effect illustrated with phosphorus dendrimers. Chemical Society Reviews, 2015, 44, 3890-3899.	38.1	118
34	Advances in Combination Therapies Based on Nanoparticles for Efficacious Cancer Treatment: An Analytical Report. Biomacromolecules, 2015, 16, 1-27.	5.4	117
35	Water-Soluble Polycationic Dendrimers with a Phosphoramidothioate Backbone: Preliminary Studies of Cytotoxicity and Oligonucleotide/Plasmid Delivery in Human Cell Culture. Oligonucleotides, 2003, 13, 193-205.	2.7	113
36	Organophosphorus Dendrimers as New Gelators for Hydrogels. Angewandte Chemie - International Edition, 2001, 40, 2626-2629.	13.8	112

#	Article	IF	CITATIONS
37	Mannodendrimers prevent acute lung inflammation by inhibiting neutrophil recruitment. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8795-8800.	7.1	112
38	The specific contribution of phosphorus in dendrimer chemistry. Chemical Communications, 2002, , 2929-2942.	4.1	111
39	New Mesotextured Hybrid Materials Made from Assemblies of Dendrimers and Titanium(IV)-Oxo-Organo Clusters. Angewandte Chemie - International Edition, 2000, 39, 4249-4254.	13.8	110
40	Immobilization of Redox-Active Ligands on an Electrode: The Dendrimer Route. Angewandte Chemie - International Edition, 2001, 40, 224-227.	13.8	110
41	Nanometric Sponges Made of Water-Soluble Hydrophobic Dendrimers. Journal of the American Chemical Society, 2004, 126, 2304-2305.	13.7	104
42	Dendrimer space concept for innovative nanomedicine: A futuristic vision for medicinal chemistry. Progress in Polymer Science, 2013, 38, 993-1008.	24.7	104
43	A modular approach to two-photon absorbing organic nanodots: brilliant dendrimers as an alternative to semiconductor quantum dots?. Chemical Communications, 2006, , 915.	4.1	103
44	Tailored Control and Optimisation of the Number of Phosphonic Acid Termini on Phosphorus ontaining Dendrimers for the Exâ€Vivo Activation of Human Monocytes. Chemistry - A European Journal, 2008, 14, 4836-4850.	3.3	102
45	Phosphorus Dendrimers Affect Alzheimer's (Aβ _{1–28}) Peptide and MAP-Tau Protein Aggregation. Molecular Pharmaceutics, 2012, 9, 458-469.	4.6	98
46	Dendrimer Design: How to Circumvent the Dilemma of a Reduction of Steps or an Increase of Function Multiplicity?. Angewandte Chemie - International Edition, 2003, 42, 1822-1826.	13.8	96
47	Formation of Dendrimer Nanotubes by Layer-by-Layer Deposition. Small, 2004, 1, 99-102.	10.0	96
48	Dendrimers and nanotubes: a fruitful association. Chemical Society Reviews, 2010, 39, 2034.	38.1	96
49	Pyreneâ€Tagged Dendritic Catalysts Noncovalently Grafted onto Magnetic Co/C Nanoparticles: An Efficient and Recyclable System for Drug Synthesis. Angewandte Chemie - International Edition, 2013, 52, 3626-3629.	13.8	94
50	First Divergent Strategy Using Two AB2 Unprotected Monomers for the Rapid Synthesis of Dendrimers. Journal of the American Chemical Society, 2001, 123, 6698-6699.	13.7	93
51	MALDI TOF Mass Spectrometry for the Characterization of Phosphorus-Containing Dendrimers. Scope and Limitations. Analytical Chemistry, 2000, 72, 5097-5105.	6.5	92
52	Organometallic Derivatives of Phosphorus-containing Dendrimers. Synthesis, Properties and Applications in Catalysis Current Organic Chemistry, 2002, 6, 739-774.	1.6	92
53	Optimisation of dendrimer-mediated gene transfer by anionic oligomers. Journal of Gene Medicine, 2003, 5, 61-71.	2.8	89
54	Anti-inflammatory and immunosuppressive activation of human monocytes by a bioactive dendrimer. Journal of Leukocyte Biology, 2009, 85, 553-562.	3.3	89

#	Article	IF	CITATIONS
55	Polyaminophosphine Containing Dendrimers. Syntheses and Characterization. Journal of the American Chemical Society, 1995, 117, 5470-5476.	13.7	88
56	Original Multivalent Copper(II)-Conjugated Phosphorus Dendrimers and Corresponding Mononuclear Copper(II) Complexes with Antitumoral Activities. Molecular Pharmaceutics, 2013, 10, 1459-1464.	4.6	88
57	Biological properties of phosphorus dendrimers. New Journal of Chemistry, 2010, 34, 1512.	2.8	87
58	Dendrislides, dendrichips: a simple chemical functionalization of glass slides with phosphorus dendrimers as an effective means for the preparation of biochips. New Journal of Chemistry, 2003, 27, 1713-1719.	2.8	86
59	Palladium(0) Nanoparticles Stabilized by Phosphorus Dendrimers Containing Coordinating 15-Membered Triolefinic Macrocycles in Periphery. Langmuir, 2008, 24, 2090-2101.	3.5	85
60	Multicharged and/or Water‧oluble Fluorescent Dendrimers: Properties and Uses. Chemistry - A European Journal, 2009, 15, 9270-9285.	3.3	85
61	Biological Properties of New Viologen-Phosphorus Dendrimers. Molecular Pharmaceutics, 2012, 9, 448-457.	4.6	85
62	Coordination chemistry with phosphorus dendrimers. Applications as catalysts, for materials, and in biology. Coordination Chemistry Reviews, 2016, 308, 478-497.	18.8	85
63	Synthesis and Characterization of Linear, Hyperbranched, and Dendrimer-Like Polymers Constituted of the Same Repeating Unit. Chemistry - A European Journal, 2001, 7, 3095-3105.	3.3	84
64	"Lego―Chemistry for the Straightforward Synthesis of Dendrimers. Journal of Organic Chemistry, 2003, 68, 6043-6046.	3.2	84
65	Octasubstituted Metal-Free Phthalocyanine as Core of Phosphorus Dendrimers:Â A Probe for the Properties of the Internal Structure. Journal of the American Chemical Society, 2005, 127, 15762-15770.	13.7	84
66	Water-Soluble Group 8 and 9 Transition Metal Complexes Containing a Trihydrazinophosphaadamantane Ligand: Catalytic Applications in Isomerization of Allylic Alcohols and Cycloisomerization of (Z)-Enynols in Aqueous Medium. Advanced Synthesis and Catalysis, 2006, 348, 1671-1679.	4.3	84
67	Synthesis and Application of Phosphorus Dendrimer Immobilized Azabis(oxazolines). Organic Letters, 2007, 9, 2895-2898.	4.6	84
68	Synthesis and structure of the first cyclodiphosphazene. Dimerization of a phosphonitrile :P.tplbond.N. Journal of the American Chemical Society, 1984, 106, 6088-6089.	13.7	83
69	The specific functionalization of cyclotriphosphazene for the synthesis of smart dendrimers. Dalton Transactions, 2016, 45, 1810-1822.	3.3	82
70	EPR Study of the Interactions between Dendrimers and Peptides Involved in Alzheimer's and Prion Diseases. Macromolecular Bioscience, 2007, 7, 1065-1074.	4.1	81
71	Functional Quantumâ€Dot/Dendrimer Nanotubes for Sensitive Detection of DNA Hybridization. Small, 2008, 4, 566-571.	10.0	80
72	Regioselective Gold Complexation within the Cascade Structure of Phosphorus-Containing Dendrimers. Chemistry - A European Journal, 1998, 4, 2031-2036.	3.3	79

#	Article	IF	CITATIONS
73	Phosphorusâ€Containing Dendrimers: Synthesis of Macromolecules with Multiple Tri―and Tetrafunctionalization. Chemistry - A European Journal, 1996, 2, 1417-1426.	3.3	78
74	Chemistry within Megamolecules:Â Regiospecific Functionalization after Construction of Phosphorus Dendrimers. Journal of the American Chemical Society, 1998, 120, 13070-13082.	13.7	78
75	Anti-Inflammatory Effect of Anti-TNF-α SiRNA Cationic Phosphorus Dendrimer Nanocomplexes Administered Intranasally in a Murine Acute Lung Injury Model. Biomacromolecules, 2017, 18, 2379-2388.	5.4	78
76	Doxorubicin-Conjugated PAMAM Dendrimers for pH-Responsive Drug Release and Folic Acid-Targeted Cancer Therapy. Pharmaceutics, 2018, 10, 162.	4.5	78
77	Dendritic Catanionic Assemblies: In vitro Anti-HIV Activity of Phosphorus-Containing Dendrimers Bearing Galβ1cer Analogues. ChemBioChem, 2005, 6, 2207-2213.	2.6	77
78	Present drug-likeness filters in medicinal chemistry during the hit and lead optimization process: how far can they be simplified?. Drug Discovery Today, 2018, 23, 605-615.	6.4	77
79	Chemoselective Polyalkylations of Phosphorus-Containing Dendrimers. Angewandte Chemie International Edition in English, 1997, 36, 596-599.	4.4	76
80	Naked Au55 Clusters: Dramatic Effect of a Thiol-Terminated Dendrimer. Chemistry - A European Journal, 2000, 6, 1693-1697.	3.3	75
81	Divergent Approaches to Phosphorus-Containing Dendrimers and their Functionalization. Topics in Current Chemistry, 1998, , 79-124.	4.0	75
82	Phosphorus-Containing Dendrimers with Ferrocenyl Units at the Core, within the Branches, and on the Periphery. Macromolecules, 2000, 33, 7328-7336.	4.8	74
83	Polyelectrolyte Layer-by-Layer Deposition in Cylindrical Nanopores. ACS Nano, 2010, 4, 3909-3920.	14.6	74
84	Grafting of water-soluble phosphines to dendrimers and their use in catalysis: positive dendritic effects in aqueous media. Dalton Transactions, 2009, , 4432.	3.3	73
85	Versatile Complexation Ability of Very Large Phosphino-Terminated Dendrimers. Inorganic Chemistry, 1997, 36, 1939-1945.	4.0	72
86	Dendrimer Space Exploration: An Assessment of Dendrimers/Dendritic Scaffolding as Inhibitors of Protein–Protein Interactions, a Potential New Area of Pharmaceutical Development. Chemical Reviews, 2014, 114, 1327-1342.	47.7	72
87	Anticancer siRNA cocktails as a novel tool to treat cancer cells. Part (B). Efficiency of pharmacological action. International Journal of Pharmaceutics, 2015, 485, 288-294.	5.2	71
88	Phosphorus-Containing Dendrimers:Â Chemoselective Functionalization of Internal Layers. Journal of the American Chemical Society, 1998, 120, 4029-4030.	13.7	70
89	Iminophosphine Palladium Complexes in Catalytic Stille Coupling Reactions:Â From Monomers to Dendrimers. Organometallics, 2002, 21, 4680-4687.	2.3	70
90	Resonating piezoelectric membranes for microelectromechanically based bioassay: detection of streptavidin–gold nanoparticles interaction with biotinylated DNA. Sensors and Actuators B: Chemical, 2005, 110, 125-136.	7.8	70

#	Article	IF	CITATIONS
91	Synthesis of hybrid dendrimer-star polymers by the RAFT process. Chemical Communications, 2004, , 2110-2111.	4.1	69
92	New phosphorus dendrimers with chiral ferrocenyl phosphine-thioether ligands on the periphery for asymmetric catalysis. Journal of Organometallic Chemistry, 2007, 692, 1064-1073.	1.8	69
93	Segmental Mobility in Phosphorus-Containing Dendrimers. Studies by Fluorescent Spectroscopy. Macromolecules, 2001, 34, 5599-5606.	4.8	68
94	Cationic and Fluorescent "Janus―Dendrimers. Organic Letters, 2008, 10, 4751-4754.	4.6	68
95	Regulatory activity of azabisphosphonate-capped dendrimers on human CD4+ T cell proliferation enhances ex-vivo expansion of NK cells from PBMCs for immunotherapy. Journal of Translational Medicine, 2009, 7, 82.	4.4	68
96	Specific functionalization on the surface of dendrimers. Tetrahedron Letters, 1996, 37, 9053-9056.	1.4	67
97	Cooperative Twoâ€Photon Absorption Enhancement by Throughâ€Space Interactions in Multichromophoric Compounds. Angewandte Chemie - International Edition, 2009, 48, 8691-8694.	13.8	66
98	Influence of phosphorus dendrimers on the aggregation of the prion peptide PrP 185–208. Biochemical and Biophysical Research Communications, 2007, 364, 20-25.	2.1	65
99	Synthesis and Properties of Dendrimers Possessing the Same Fluorophore(s) Located Either Peripherally or Off-Center. Journal of Organic Chemistry, 2007, 72, 8707-8715.	3.2	65
100	Thiazolyl-phosphine hydrochloride salts: effective auxiliary ligands for ruthenium-catalyzed nitrile hydration reactions and related amide bond forming processes in water. Green Chemistry, 2013, 15, 2447.	9.0	65
101	Anticancer copper(II) phosphorus dendrimers are potent proapoptotic Bax activators. European Journal of Medicinal Chemistry, 2017, 132, 142-156.	5.5	65
102	New Synthetic Strategies for Phosphorus-Containing Cryptands and the First Phosphorus Spherand Type Compound. Journal of the American Chemical Society, 1994, 116, 5007-5008.	13.7	64
103	Anticancer siRNA cocktails as a novel tool to treat cancer cells. Part (A). Mechanisms of interaction. International Journal of Pharmaceutics, 2015, 485, 261-269.	5.2	64
104	Cyclotriphosphazene core-based dendrimers for biomedical applications: an update on recent advances. Journal of Materials Chemistry B, 2018, 6, 884-895.	5.8	64
105	Phosphorus-Containing Dendrimers. Easy Access to New Multi-Difunctionalized Macromolecules. Journal of Organic Chemistry, 1996, 61, 3799-3805.	3.2	63
106	Organic nanodots for multiphotonics: synthesis and photophysical studies. New Journal of Chemistry, 2007, 31, 1354.	2.8	63
107	Viologen-Phosphorus Dendrimers Inhibit α-Synuclein Fibrillation. Molecular Pharmaceutics, 2013, 10, 1131-1137.	4.6	63
108	New chiral phosphorus-containing dendrimers with ferrocenes on the periphery. Tetrahedron, 2001, 57, 2521-2536.	1.9	62

#	Article	IF	CITATIONS
109	Polycationic phosphorus dendrimers: synthesis, characterization, study of cytotoxicity, complexation of DNA, and transfection experiments. New Journal of Chemistry, 2009, 33, 318-326.	2.8	62
110	Why and how have drug discovery strategies in pharma changed? What are the new mindsets?. Drug Discovery Today, 2016, 21, 239-249.	6.4	62
111	Dendrimers or Nanoparticles as Supports for the Design of Efficient and Recoverable Organocatalysts?. Advanced Synthesis and Catalysis, 2013, 355, 1748-1754.	4.3	59
112	Phosphine-terminated dendrimers. Coordination Chemistry Reviews, 1998, 178-180, 793-821.	18.8	58
113	Photochemical and thermal rearrangement of heavier main-group element azides. Accounts of Chemical Research, 1986, 19, 17-23.	15.6	57
114	Behavior of an Optically Active Ferrocene Chiral Shell Located within Phosphorus-Containing Dendrimers. Organometallics, 2002, 21, 1891-1897.	2.3	57
115	Fluorinated dendrimers. Current Opinion in Colloid and Interface Science, 2003, 8, 282-295.	7.4	57
116	Dendrimer therapeutics: covalent and ionic attachments. New Journal of Chemistry, 2012, 36, 227-240.	2.8	57
117	Superstructured poly(amidoamine) dendrimer-based nanoconstructs as platforms for cancer nanomedicine: A concise review. Coordination Chemistry Reviews, 2020, 421, 213463.	18.8	57
118	Phosphorus-containing dendrimers against α-synuclein fibril formation. International Journal of Biological Macromolecules, 2012, 50, 1138-1143.	7.5	56
119	Ruthenium Hydride and Dihydrogen Complexes with Dendrimeric Multidentate Ligands. Organometallics, 1997, 16, 3489-3497.	2.3	55
120	Assembly and Mechanical Properties of Phosphorus Dendrimer/Polyelectrolyte Multilayer Microcapsules. Langmuir, 2005, 21, 7200-7206.	3.5	55
121	Organicâ^'lnorganic Hybrid Materials Incorporating Phosphorus-Containing Dendrimers. Chemistry of Materials, 2000, 12, 3848-3856.	6.7	54
122	Synthesis of phosphorus dendrimers bearing chromophoric end groups: toward organic blue light-emitting diodes. Tetrahedron, 2006, 62, 11891-11899.	1.9	54
123	Original Multivalent Gold(III) and Dual Gold(III)–Copper(II) Conjugated Phosphorus Dendrimers as Potent Antitumoral and Antimicrobial Agents. Molecular Pharmaceutics, 2017, 14, 4087-4097.	4.6	54
124	Can dendrimer based nanoparticles fight neurodegenerative diseases? Current situation versus other established approaches. Progress in Polymer Science, 2017, 64, 23-51.	24.7	54
125	Uses of Dendrimers for DNA Microarrays. Sensors, 2006, 6, 901-914.	3.8	54
126	Dendrimer–silica hybrid mesoporous materials. New Journal of Chemistry, 2012, 36, 241-255.	2.8	53

#	Article	IF	CITATIONS
127	Interactions between dendrimers and heparin and their implications for the anti-prion activity of dendrimers. New Journal of Chemistry, 2009, 33, 1087.	2.8	50
128	Ein allgemeiner Zugang zu neutralen, phosphorhaltigen Dendrimeren. Angewandte Chemie, 1994, 106, 1682-1684.	2.0	48
129	Phosphorus-containing dendrimers bearing galactosylceramide analogs: Self-assembly propertiesElectronic supplementary information (ESI) available: experimental. See http://www.rsc.org/suppdata/cc/b2/b204287h/. Chemical Communications, 2002, , 1864-1865.	4.1	48
130	A third generation chiral phosphorus-containing dendrimer as ligand in Pd-catalyzed asymmetric allylic alkylation. Tetrahedron Letters, 2005, 46, 6503-6506.	1.4	48
131	Synthesis of Dendrimers Terminated by Bis(diphenylphosphinomethyl)amino Ligands and Use of Their Palladium Complexes for Catalyzing Câ^'C Cross-Coupling Reactions. Organometallics, 2008, 27, 2066-2073.	2.3	48
132	Doxycycline-regulated GDNF expression promotes axonal regeneration and functional recovery in transected peripheral nerve. Journal of Controlled Release, 2013, 172, 841-851.	9.9	48
133	Polyazaphosphorus macrocycles. Synthetic approaches to symmetric or dissymmetric 18-, 20-, 22-, and 30-membered rings. Journal of the American Chemical Society, 1990, 112, 5618-5623.	13.7	47
134	Dendrimers Containing Zwitterionic [Phosphonium Anionic Zirconocene(IV)] Complexes. Organometallics, 1999, 18, 1580-1582.	2.3	47
135	Phosphorus dendrimers possessing metallic groups in their internal structure (core or branches): Syntheses and properties. Coordination Chemistry Reviews, 2005, 249, 1917-1926.	18.8	47
136	Bench-to-bedside translation of dendrimers: Reality or utopia? A concise analysis. Advanced Drug Delivery Reviews, 2018, 136-137, 73-81.	13.7	47
137	Dendrimers as macromolecular tools to tackle from colon to brain tumor types: a concise overview. New Journal of Chemistry, 2013, 37, 3337.	2.8	46
138	Surface, core, and structure modifications of phosphorus-containing dendrimers. Influence on the thermal stability. Tetrahedron, 2003, 59, 3965-3973.	1.9	45
139	Optical Properties of Hybrid Dendritic–Mesoporous Titania Nanocomposite Films. Chemistry - A European Journal, 2008, 14, 7658-7669.	3.3	45
140	Dendritic phosphoramidite ligands for Rh-catalyzed [2+2+2] cycloaddition reactions: unprecedented enhancement of enantiodiscrimination. Chemical Communications, 2012, 48, 9248.	4.1	45
141	Efficient and recyclable rare earth-based catalysts for Friedel–Crafts acylations under microwave heating: dendrimers show the way. Green Chemistry, 2013, 15, 2075.	9.0	44
142	Self-Assembly of Water-Soluble Dendrimers into Thermoreversible Hydrogels and Macroscopic Fibers. Langmuir, 2004, 20, 9348-9353.	3.5	43
143	Cationic phosphorus dendrimers and therapy for Alzheimer's disease. New Journal of Chemistry, 2015, 39, 4852-4859.	2.8	43
144	Synthesis and Photochemical Behavior of Phosphorus Dendrimers Containing Azobenzene Units within the Branches and/or on the Surface. Chemistry - A European Journal, 2002, 8, 2172.	3.3	41

#	Article	lF	CITATIONS
145	Giant dendrimer-like particles from nanolatexes. Chemical Communications, 2004, , 1816-1817.	4.1	41
146	Interaction of cationic phosphorus dendrimers (CPD) with charged and neutral lipid membranes. Colloids and Surfaces B: Biointerfaces, 2011, 82, 8-12.	5.0	41
147	Design of new tools for macrocyclic synthesis. Applications to the preparation of polyphosphorus macrocycles. Journal of Organic Chemistry, 1992, 57, 970-975.	3.2	40
148	Localized surface plasmon resonance coupling in Au nanoparticles/phosphorus dendrimer multilayer thin films fabricated by layer-by-layer self-assembly method. Journal of Materials Chemistry, 2009, 19, 2006.	6.7	40
149	Phosphonate terminated PPH dendrimers: influence of pendant alkyl chains on the in vitro anti-HIV-1 properties. Organic and Biomolecular Chemistry, 2009, 7, 3491.	2.8	40
150	Interactions of phosphorus-containing dendrimers with liposomes. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2011, 1811, 221-226.	2.4	40
151	Revisiting Cationic Phosphorus Dendrimers as a Nonviral Vector for Optimized Gene Delivery Toward Cancer Therapy Applications. Biomacromolecules, 2020, 21, 2502-2511.	5.4	40
152	The Detection of DNA Hybridization on Phosphorus Dendrimer Multilayer Films by Surface Plasmon Field Enhanced-Fluorescence Spectroscopy. Langmuir, 2009, 25, 13680-13684.	3.5	39
153	Radical Dendrimers: A Family of Five Generations of Phosphorus Dendrimers Functionalized with TEMPO Radicals. Macromolecules, 2014, 47, 7717-7724.	4.8	39
154	Synergistic Effects of Anionic/Cationic Dendrimers and Levofloxacin on Antibacterial Activities. Molecules, 2019, 24, 2894.	3.8	39
155	Electrogenerated poly(dendrimers) containing conjugated poly(thiophene) chains. Chemical Communications, 2000, , 507-508.	4.1	38
156	Microstructured Liposome Array. Bioconjugate Chemistry, 2006, 17, 245-247.	3.6	38
157	Dendritic structures within dendritic structures: dendrimer-induced formation and self-assembly of nanoparticle networks. Nanoscale, 2009, 1, 233.	5.6	38
158	Multivalent catanionic GalCer analogs derived from first generation dendrimeric phosphonic acids. Bioorganic and Medicinal Chemistry, 2010, 18, 242-248.	3.0	38
159	An efficient and recyclable dendritic catalyst able to dramatically decrease palladium leaching in Suzuki couplings. Green Chemistry, 2012, 14, 2807.	9.0	38
160	Dendrimers toward Translational Nanotherapeutics: Concise Key Step Analysis. Bioconjugate Chemistry, 2020, 31, 2060-2071.	3.6	38
161	Phosphorus dendrimers as new tools to deliver active substances. Tetrahedron Letters, 2001, 42, 3587-3590.	1.4	37
162	Dendrimers ended by non-symmetrical azadiphosphonate groups: Synthesis and immunological properties. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 3963-3966.	2.2	37

#	Article	IF	CITATIONS
163	Hierarchically porous nanostructures through phosphonate–metal alkoxide condensation and growth using functionalized dendrimeric building blocks. Chemical Communications, 2011, 47, 8626.	4.1	37
164	Targeted tumor dual mode CT/MR imaging using multifunctional polyethylenimine-entrapped gold nanoparticles loaded with gadolinium. Drug Delivery, 2018, 25, 178-186.	5.7	37
165	Dendrimers with N,N-Disubstituted Hydrazines as End Groups, Useful Precursors for the Synthesis of Water-Soluble Dendrimers Capped with Carbohydrate, Carboxylic or Boronic Acid Derivatives. Tetrahedron, 2000, 56, 6269-6277.	1.9	36
166	Low temperature synthesis of ordered mesoporous stable anatase nanocrystals: the phosphorus dendrimer approach. Nanoscale, 2013, 5, 2850.	5.6	36
167	Dendrimer– and polymeric nanoparticle–aptamer bioconjugates as nonviral delivery systems: a new approach in medicine. Drug Discovery Today, 2020, 25, 1065-1073.	6.4	36
168	Developing the Kharasch Reaction in Aqueous Media: Dinuclear Group 8 and 9 Catalysts Containing the Bridging Cage Ligand Tris(1,2-dimethylhydrazino)diphosphane. European Journal of Inorganic Chemistry, 2008, 2008, 786-794.	2.0	35
169	Time Evolution of the Aggregation Process of Peptides Involved in Neurodegenerative Diseases and Preventing Aggregation Effect of Phosphorus Dendrimers Studied by EPR. Biomacromolecules, 2010, 11, 3014-3021.	5.4	35
170	Synthesis of Onionâ€Peel Nanodendritic Structures with Sequential Functional Phosphorus Diversity. Chemistry - A European Journal, 2015, 21, 6400-6408.	3.3	35
171	Non-invasive intranasal administration route directly to the brain using dendrimer nanoplatforms: An opportunity to develop new CNS drugs. European Journal of Medicinal Chemistry, 2021, 209, 112905.	5.5	35
172	Efficient synthesis of phosphorus-containing dendrimers capped with isosteric functions of amino-bismethylene phosphonic acids. Tetrahedron Letters, 2009, 50, 2078-2082.	1.4	34
173	"Cageâ€Like―Phosphines: Design and Catalytic Properties. Advanced Synthesis and Catalysis, 2010, 352, 2341-2358.	4.3	34
174	Phosphorus dendrimers and photodynamic therapy. Spectroscopic studies on two dendrimer-photosensitizer complexes: Cationic phosphorus dendrimer with rose bengal and anionic phosphorus dendrimer with methylene blue. International Journal of Pharmaceutics, 2015, 492, 266-274.	5.2	34
175	Phosphorylated Hydrazines and Aldehydes as Precursors of Phosphorus-Containing Multimacrocycles. Journal of the American Chemical Society, 1995, 117, 1712-1721.	13.7	33
176	Chemistry in the internal voids of dendrimers. Coordination Chemistry Reviews, 1999, 190-192, 3-18.	18.8	33
177	N-Thiophosphorylated andN-Phosphorylated Iminophosphoranes [R3P=N–P(X)R′2; × = O, S] as Models for Dendrimers: Synthesis, Reactivity and Crystal Structures. European Journal of Inorganic Chemistry, 1999, 1999, 601-611.	2.0	33
178	Mechanism of Cationic Phosphorus Dendrimer Toxicity against Murine Neural Cell Lines. Molecular Pharmaceutics, 2013, 10, 3484-3496.	4.6	33
179	Positively charged phosphorus dendrimers. An overview of their properties. New Journal of Chemistry, 2013, 37, 3358.	2.8	33
180	Synthesis and Structural Characterization of a Dendrimer Model Compound Based on a Cyclotriphosphazene Core with TEMPO Radicals as Substituents. Organic Letters, 2013, 15, 3490-3493.	4.6	33

#	Article	IF	CITATIONS
181	A novel class of ethacrynic acid derivatives as promising drug-like potent generation of anticancer agents with established mechanism of action. European Journal of Medicinal Chemistry, 2016, 122, 656-673.	5.5	33
182	Efficient Phosphorus Catalysts for the Halogenâ€Exchange (Halex) Reaction. Advanced Synthesis and Catalysis, 2008, 350, 2677-2682.	4.3	32
183	Phosphorus dendrimers as viewed by 31P NMR spectroscopy; synthesis and characterization. Comptes Rendus Chimie, 2010, 13, 1006-1027.	0.5	32
184	Synthesis of Dendritic βâ€Diketones and Their Application in Copperâ€Catalyzed Diaryl Ether Formation. European Journal of Organic Chemistry, 2012, 2012, 1056-1062.	2.4	32
185	Molecular and Macromolecular Engineering with Viologens as Building Blocks: Rational Design of Phosphorus–Viologen Dendritic Structures. European Journal of Organic Chemistry, 2012, 2012, 269-273.	2.4	32
186	Compound high-quality criteria: a new vision to guide the development of drugs, current situation. Drug Discovery Today, 2016, 21, 573-584.	6.4	32
187	Exploration of biomedical dendrimer space based on in-vitro physicochemical parameters: key factor analysis (Part 1). Drug Discovery Today, 2019, 24, 1176-1183.	6.4	32
188	Phosphorus dendrimer-based copper(II) complexes enable ultrasound-enhanced tumor theranostics. Nano Today, 2020, 33, 100899.	11.9	32
189	Phosphate-, Phosphite-, Ylide-, and Phosphonate-Terminated Dendrimers. Journal of Organic Chemistry, 1997, 62, 4834-4841.	3.2	31
190	Effect of Dendrimer Generation on the Assembly and Mechanical Properties of DNA/Phosphorus Dendrimer Multilayer Microcapsules. Macromolecules, 2006, 39, 5479-5483.	4.8	31
191	Fluorescent Phosphorus Dendrimer as a Spectral Nanosensor for Macrophage Polarization and Fate Tracking in Spinal Cord Injury. Macromolecular Bioscience, 2015, 15, 1523-1534.	4.1	31
192	Dendrimer mediated targeting of siRNA against poloâ€like kinase for the treatment of triple negative breast cancer. Journal of Biomedical Materials Research - Part A, 2019, 107, 1933-1944.	4.0	31
193	First phosphorus macrocycles incorporating tetrathiafulvalene (TTF) moieties. Tetrahedron Letters, 1990, 31, 6343-6346.	1.4	30
194	Michael-Type Addition of Amines to the Vinyl Core of Dendrons â^' Application to the Synthesis of Multidendritic Systems. European Journal of Organic Chemistry, 2000, 2000, 3555-3568.	2.4	30
195	Bioactive multilayer thin films of charged N,N-disubstituted hydrazine phosphorus dendrimers fabricated by layer-by-layer self-assembly. Thin Solid Films, 2008, 516, 1256-1264.	1.8	30
196	Thiazolyl Phosphine Ligands for Copper-Catalyzed Arylation and Vinylation of Nucleophiles in Organic and Aqueous Media. Organometallics, 2008, 27, 5733-5736.	2.3	30
197	Fluorescent Coreâ€5hell Star Polymers Based Bioassays for Ultrasensitive DNA Detection by Surface Plasmon Fluorescence Spectroscopy. Macromolecular Rapid Communications, 2011, 32, 679-683.	3.9	30
198	Probing single molecule interactions by AFM using bio-functionalized dendritips. Sensors and Actuators B: Chemical, 2012, 168, 436-441.	7.8	30

#	Article	IF	CITATIONS
199	Bifunctional Phosphorus Dendrimers and Their Properties. Molecules, 2016, 21, 538.	3.8	30
200	Dendrimeric Nanoparticles for Twoâ€Photon Photodynamic Therapy and Imaging: Synthesis, Photophysical Properties, Innocuousness in Daylight and Cytotoxicity under Twoâ€Photon Irradiation in the NIR. Chemistry - A European Journal, 2019, 25, 3637-3649.	3.3	30
201	The Behavior of Au55 Nanoclusters on and in Thiol-Terminated Dendrimer Monolayers. Small, 2004, 1, 73-75.	10.0	29
202	Exploration of biomedical dendrimer space based on in-vivo physicochemical parameters: Key factor analysis (Part 2). Drug Discovery Today, 2019, 24, 1184-1192.	6.4	29
203	Engineered non-invasive functionalized dendrimer/dendron-entrapped/complexed gold nanoparticles as a novel class of theranostic (radio)pharmaceuticals in cancer therapy. Journal of Controlled Release, 2021, 332, 346-366.	9.9	29
204	Phosphorus dendrimers for the controlled elaboration of organic–inorganic materials. Journal of Materials Chemistry, 2005, 15, 3643.	6.7	28
205	From Graftable Biphotonic Chromophores to Waterâ€Soluble Organic Nanodots for Biophotonics: The Importance of Environmental Effects. Chemistry - A European Journal, 2012, 18, 16450-16462.	3.3	28
206	New Ways to Treat Tuberculosis Using Dendrimers as Nanocarriers. Pharmaceutics, 2018, 10, 105.	4.5	28
207	Hexamethylhydrazinocyclotriphosphazene N3P3(NMeNH2)6: Starting reagent for the synthesis of multifunctionalized species, macrocycles, and small dendrimers. , 1996, 7, 149-154.		27
208	Naked Au ₅₅ Clusters: Dramatic Effect of a Thiol-Terminated Dendrimer. Chemistry - A European Journal, 2000, 6, 1693-1697.	3.3	27
209	Detection of TNT using a sensitive two-photon organic dendrimer for remote sensing. Nanotechnology, 2008, 19, 115502.	2.6	27
210	Synthesis of a Fluorescent Cationic Phosphorus Dendrimer and Preliminary Biological Studies of Its Interaction with DNA. Nucleosides, Nucleotides and Nucleic Acids, 2010, 29, 155-167.	1.1	27
211	Copper in dendrimer synthesis and applications of copper–dendrimer systems in catalysis: a concise overview. Tetrahedron, 2013, 69, 3103-3133.	1.9	27
212	Biological Activity of Mesoporous Dendrimer-Coated Titanium Dioxide: Insight on the Role of the Surface–Interface Composition and the Framework Crystallinity. ACS Applied Materials & Interfaces, 2015, 7, 19994-20003.	8.0	27
213	Fourier transform infrared spectroscopy (FTIR) characterization of the interaction of anti-cancer photosensitizers with dendrimers. Analytical and Bioanalytical Chemistry, 2016, 408, 535-544.	3.7	27
214	Dendrimer-Enabled Therapeutic Antisense Delivery Systems as Innovation in Medicine. Bioconjugate Chemistry, 2019, 30, 1938-1950.	3.6	27
215	Organometallic Derivatives at the Core of Phosphorus-Containing Dendrimers. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2005, 631, 2881-2887.	1.2	26
216	Metallated Phthalocyanines as the Core of Dendrimers – Synthesis and Spectroscopic Studies. European Journal of Inorganic Chemistry, 2007, 2007, 2890-2896.	2.0	26

#	Article	IF	CITATIONS
217	Investigations on dendrimer space reveal solid and liquid tumor growth-inhibition by original phosphorus-based dendrimers and the corresponding monomers and dendrons with ethacrynic acid motifs. Nanoscale, 2015, 7, 3915-3922.	5.6	26
218	Multi-Target Inhibition of Cancer Cell Growth by SiRNA Cocktails and 5-Fluorouracil Using Effective Piperidine-Terminated Phosphorus Dendrimers. Colloids and Interfaces, 2017, 1, 6.	2.1	26
219	Recent therapeutic applications of the theranostic principle with dendrimers in oncology. Science China Materials, 2018, 61, 1367-1386.	6.3	26
220	Design of tailored multi-charged phosphorus surface-block dendrimers. New Journal of Chemistry, 2006, 30, 1731.	2.8	25
221	Synthesis of dye/fluorescent functionalized dendrons based on cyclotriphosphazene. Beilstein Journal of Organic Chemistry, 2011, 7, 1577-1583.	2.2	25
222	Synthesis, characterization and biological properties of new hybrid carbosilane–viologen–phosphorus dendrimers. RSC Advances, 2015, 5, 25942-25958.	3.6	24
223	Cationic Phosphorus Dendrimer Enhances Photodynamic Activity of Rose Bengal against Basal Cell Carcinoma Cell Lines. Molecular Pharmaceutics, 2017, 14, 1821-1830.	4.6	24
224	Application of the Horner-Wadsworth-Emmons Reaction to the Functionalization of Dendrimers: Synthesis of Amino Acid Terminated Dendrimers. Synthesis, 1997, 1997, 1199-1207.	2.3	23
225	Design of Bisphosphonateâ€Terminated Dendrimers. European Journal of Organic Chemistry, 2010, 2010, 2759-2767.	2.4	23
226	Fluorescent Phosphorus Dendrimers: Towards Material and Biological Applications. ChemPlusChem, 2019, 84, 1070-1080.	2.8	23
227	In vivo therapeutic applications of phosphorus dendrimers: state of the art. Drug Discovery Today, 2021, 26, 677-689.	6.4	23
228	A new way for the internal functionalization of dendrimers. Tetrahedron Letters, 2004, 45, 3019-3022.	1.4	22
229	Does Charge Carrier Dimensionality Increase in Mixed-Valence Salts of Tetrathiafulvalene-Terminated Dendrimers?. Organic Letters, 2004, 6, 2109-2112.	4.6	22
230	Photo-physical and structural interactions between viologen phosphorus-based dendrimers and human serum albumin. Journal of Luminescence, 2012, 132, 1553-1563.	3.1	22
231	Effect of viologen–phosphorus dendrimers on acetylcholinesterase and butyrylcholinesterase activities. International Journal of Biological Macromolecules, 2013, 54, 119-124.	7.5	22
232	Synthesis and characterization of bifunctional dendrimers: preliminary use for the coating of gold surfaces and the proliferation of human osteoblasts (HOB). New Journal of Chemistry, 2015, 39, 7194-7205.	2.8	22
233	First-in-class and best-in-class dendrimer nanoplatforms from concept to clinic: Lessons learned moving forward. European Journal of Medicinal Chemistry, 2021, 219, 113456.	5.5	22
234	SYNTHESIS AND REACTIVITY OF DENDRIMERS BASed ON PHOSPHORYL (P=O) GROUPS. Phosphorus, Sulfur and Silicon and the Related Elements, 1997, 123, 21-34.	1.6	21

#	Article	IF	CITATIONS
235	In vitro PAMAM, phosphorus and viologen-phosphorus dendrimers prevent rotenone-induced cell damage. International Journal of Pharmaceutics, 2014, 474, 42-49.	5.2	21
236	From Riluzole to Dexpramipexole via Substituted-Benzothiazole Derivatives for Amyotrophic Lateral Sclerosis Disease Treatment: Case Studies. Molecules, 2020, 25, 3320.	3.8	21
237	Facile synthesis of new classes of free and complexed polyaza phosphorus macrocycles. Inorganic Chemistry, 1988, 27, 3873-3875.	4.0	20
238	Synthesis, Structure, and Reactivity of Stable PN Heterocycles with Two and Six Methyleneamine Units: [H2C?N?N(Me)]2 P(S)(Ph) and [H2C?N?N(Me)]6P3N3. Angewandte Chemie International Edition in English, 1993, 32, 1477-1479.	4.4	20
239	New phosphorus-containing dendrimers with ferrocenyl units in each layer. Comptes Rendus Chimie, 2002, 5, 309-318.	0.5	20
240	First phosphorous d-xylose-derived glycodendrimers. Tetrahedron Letters, 2009, 50, 1902-1905.	1.4	20
241	An efficient synthesis combining phosphorus dendrimers and 15-membered triolefinic azamacrocycles: towards the stabilization of platinum nanoparticles. New Journal of Chemistry, 2010, 34, 547.	2.8	20
242	Nanostructuring Polymeric Materials by Templating Strategies. Small, 2011, 7, 1384-1391.	10.0	20
243	Diversified Strategies for the Synthesis of Bifunctional Dendrimeric Structures. European Journal of Organic Chemistry, 2013, 2013, 5414-5422.	2.4	20
244	Organophosphonate bridged anatase mesocrystals: low temperature crystallization, thermal growth and hydrogen photo-evolution. Dalton Transactions, 2015, 44, 15544-15556.	3.3	20
245	Dual properties of water-soluble Ru-PTA complexes of dendrimers: Catalysis and interaction with DNA. Inorganica Chimica Acta, 2018, 470, 106-112.	2.4	20
246	Elucidating the role of surface chemistry on cationic phosphorus dendrimer–siRNA complexation. Nanoscale, 2018, 10, 10952-10962.	5.6	20
247	Facile Synthesis of Amphiphilic Fluorescent Phosphorus Dendron-Based Micelles as Antiproliferative Agents: First Investigations. Bioconjugate Chemistry, 2021, 32, 339-349.	3.6	20
248	Synthesis and Reactions of Heterocyclic Compounds Containing a P-N-N-Linkage. Synthesis, 1978, 1978, 557-576.	2.3	19
249	Functionalized macrocycles incorporating phosphorus-nitrogen and phosphorus-oxygen bonds. Strategies of synthesis. Inorganic Chemistry, 1991, 30, 3365-3367.	4.0	19
250	Influence of cationic phosphorus dendrimers on the surfactant-induced synthesis of mesostructured nanoporous silica. New Journal of Chemistry, 2007, 31, 1259-1263.	2.8	19
251	Number of terminal groups versus generation of the dendrimer, which criteria influence the catalytic properties?. Tetrahedron Letters, 2012, 53, 3876-3879.	1.4	19
252	Promising Low-Toxicity of Viologen-Phosphorus Dendrimers against Embryonic Mouse Hippocampal Cells. Molecules, 2013, 18, 12222-12240.	3.8	19

#	Article	IF	CITATIONS
253	Which Dendrimer to Attain the Desired Properties? Focus on Phosphorhydrazone Dendrimers. Molecules, 2018, 23, 622.	3.8	19
254	HIV-Antigens Charged on Phosphorus Dendrimers as Tools for Tolerogenic Dendritic Cells-Based Immunotherapy. Current Medicinal Chemistry, 2014, 21, 1898-1909.	2.4	19
255	New and efficient syntheses of symmetrical phosphorus-containing cryptands. Journal of the Chemical Society Chemical Communications, 1994, , 2161.	2.0	18
256	Phosphorus dendritic architectures: polyanionic and polycationic derivatives. Polymer International, 2006, 55, 1155-1160.	3.1	18
257	Decorating step-by-step and independently the surface and the core of dendrons. Journal of Organometallic Chemistry, 2007, 692, 1928-1939.	1.8	18
258	Viologen-phosphorus dendrimers exhibit minor toxicity against a murine neuroblastoma cell line. Cellular and Molecular Biology Letters, 2013, 18, 459-78.	7.0	18
259	Poly(phosphorhydrazone) metallodendrimers. A review. Inorganica Chimica Acta, 2014, 409, 68-88.	2.4	18
260	Ternary cooperative assembly—polymeric condensation of photoactive viologen, phosphonate-terminated dendrimers and crystalline anatase nanoparticles. Chemical Communications, 2015, 51, 17716-17719.	4.1	18
261	Interactions gold/phosphorus dendrimers. Versatile ways to hybrid organic–metallic macromolecules. Coordination Chemistry Reviews, 2018, 358, 80-91.	18.8	18
262	Dendrimer for Templating the Growth of Porous Catechol-Coordinated Titanium Dioxide Frameworks: Toward Hemocompatible Nanomaterials. ACS Applied Nano Materials, 2019, 2, 2979-2990.	5.0	18
263	Safe Polycationic Dendrimers as Potent Oral In Vivo Inhibitors of <i>Mycobacterium tuberculosis</i> : A New Therapy to Take Down Tuberculosis. Biomacromolecules, 2021, 22, 2659-2675.	5.4	18
264	Reduced number of steps for the synthesis of dense and highly functionalized dendrimers. Tetrahedron Letters, 2007, 48, 579-583.	1.4	17
265	Viologen-based dendritic macromolecular asterisks: synthesis and interplay with gold nanoparticles. Chemical Communications, 2014, 50, 6981.	4.1	17
266	Silica Functionalized by Bifunctional Dendrimers: Hybrid Nanomaterials for Trapping CO2. European Journal of Inorganic Chemistry, 2016, 2016, 3103-3110.	2.0	17
267	Phosphorus dendron nanomicelles as a platform for combination anti-inflammatory and antioxidative therapy of acute lung injury. Theranostics, 2022, 12, 3407-3419.	10.0	17
268	Heterocyclic compounds containing phosphorus. Part 30. Synthesis of mixed phosphorohydrazides and of some new mono-, bi-, and tri-cyclic derivatives. Journal of the Chemical Society Perkin Transactions 1, 1976, , 2093.	0.9	16
269	Grafting of Tetraazamacrocycles on the Surface of Phosphorus-Containing Dendrimers. European Journal of Organic Chemistry, 1999, 1999, 1701-1708.	2.4	16
270	Janus carbosilane/phosphorhydrazone dendrimers synthesized by the â€~click' Staudinger reaction. Tetrahedron Letters, 2013, 54, 6864-6867.	1.4	16

#	Article	IF	CITATIONS
271	Phosphorus dendrimers as supports of transition metal catalysts. Inorganica Chimica Acta, 2015, 431, 3-20.	2.4	16
272	Clinical diagonal translation of nanoparticles: Case studies in dendrimer nanomedicine. Journal of Controlled Release, 2021, 337, 356-370.	9.9	16
273	Interference of cationic polymeric nanoparticles with clinical chemistry tests—Clinical relevance. International Journal of Pharmaceutics, 2014, 473, 599-606.	5.2	15
274	Complexing Methylene Blue with Phosphorus Dendrimers to Increase Photodynamic Activity. Molecules, 2017, 22, 345.	3.8	15
275	Potent Anticancer Efficacy of Firstâ€Inâ€Class Cu II and Au III Metaled Phosphorus Dendrons with Distinct Cell Death Pathways. Chemistry - A European Journal, 2020, 26, 5903-5910.	3.3	15
276	Choice of strategies for the divergent synthesis of phosphorus-containing dendrons, depending on the function located at the core. New Journal of Chemistry, 2000, 24, 561-566.	2.8	14
277	Macrocyclic Core Phosphorus Dendrimers Covered on the Surface by N,P Ligands. European Journal of Organic Chemistry, 2011, 2011, 1256-1265.	2.4	14
278	Synthesis and characterization of water-soluble ferrocene-dendrimers. Journal of Organometallic Chemistry, 2012, 718, 22-30.	1.8	14
279	Cyclotriphosphazene, an old compound applied to the synthesis of smart dendrimers with tailored properties. Pure and Applied Chemistry, 2016, 88, 919-929.	1.9	14
280	Orthogonal Synthesis of Covalent Polydendrimer Frameworks by Fusing Classical and Onion-Peel Phosphorus-Based Dendritic Units. Macromolecules, 2016, 49, 5796-5805.	4.8	14
281	Functionalized Dendrimer Platforms as a New Forefront Arsenal Targeting SARS-CoV-2: An Opportunity. Pharmaceutics, 2021, 13, 1513.	4.5	14
282	Reactivity of polyaza diphosphorus macrocycles. Inorganic Chemistry, 1991, 30, 344-346.	4.0	13
283	Synthesis and Core and Surface Reactivity of Phosphorus-Based Dendrons. European Journal of Inorganic Chemistry, 2004, 2004, 2459-2466.	2.0	13
284	Thioacylation Reactions for the Surface Functionalization of Phosphorus-Containing Dendrimers. Organic Letters, 2004, 6, 1309-1312.	4.6	13
285	THF-induced stiffening of polyelectrolyte/phosphorus dendrimer multilayer microcapsules. Polymer, 2010, 51, 4525-4529.	3.8	13
286	Metalâ€based phosphorus dendrimers as novel nanotherapeutic strategies to tackle cancers: A concise overview. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2019, 11, e1577.	6.1	13
287	Phosphorus dendrimers as powerful nanoplatforms for drug delivery, as fluorescent probes and for liposome interaction studies: A concise overview. European Journal of Medicinal Chemistry, 2020, 208, 112788.	5.5	13
288	In Search of a Phosphorus Dendrimer-Based Carrier of Rose Bengal: Tyramine Linker Limits Fluorescent and Phototoxic Properties of a Photosensitizer. International Journal of Molecular Sciences, 2020, 21, 4456.	4.1	13

#	Article	IF	CITATIONS
289	<i>gem</i> â€Bisphosphonateâ€Ended Group Dendrimers: Design and Gadolinium Complexing Properties. European Journal of Organic Chemistry, 2009, 2009, 4290-4299.	2.4	12
290	Recoverable Dendritic Phaseâ€Transfer Catalysts that Contain (+)â€Cinchonineâ€Derived Ammonium Salts. ChemCatChem, 2016, 8, 2049-2056.	3.7	12
291	First-in-Class Combination Therapy of a Copper(II) Metallo-Phosphorus Dendrimer with Cytotoxic Agents. Oncology, 2018, 94, 324-328.	1.9	12
292	Interfacial complexation driven three-dimensional assembly of cationic phosphorus dendrimers and graphene oxide sheets. Nanoscale Advances, 2019, 1, 314-321.	4.6	12
293	Dendritic Macromolecular Architectures: Dendrimer-Based Polyion Complex Micelles. Biomacromolecules, 2021, 22, 262-274.	5.4	12
294	Engineered Stable Bioactive Per Se Amphiphilic Phosphorus Dendron Nanomicelles as a Highly Efficient Drug Delivery System To Take Down Breast Cancer In Vivo. Biomacromolecules, 2022, 23, 2827-2837.	5.4	12
295	Polyazatetraphosphorus Pî—,C and Pî—,Nî—,N macrocycles. Tetrahedron Letters, 1991, 32, 203-206.	1.4	11
296	Brilliant organic nanodots: novel nano-objects for bionanophotonics. Proceedings of SPIE, 2008, , .	0.8	11
297	Selective encapsulation of dye molecules in dendrimer/polymer multilayer microcapsules by DNA hybridization. Journal of Materials Chemistry, 2010, 20, 1438.	6.7	11
298	Specific vapor sorption properties of phosphorus-containing dendrimers. Journal of Colloid and Interface Science, 2011, 360, 204-210.	9.4	11
299	Interaction between viologen-phosphorus dendrimers and α-synuclein. Journal of Luminescence, 2013, 134, 132-137.	3.1	11
300	Bifunctional metallodendrimers based on AB5 derivatives of cyclotriphosphazene as core and P,N ligands as terminal functions. Inorganica Chimica Acta, 2014, 409, 121-126.	2.4	11
301	Phosphorhydrazones as Useful Building Blocks for Special Architectures: Macrocycles and Dendrimers. European Journal of Inorganic Chemistry, 2019, 2019, 1457-1475.	2.0	11
302	Hybrid phosphorus–viologen dendrimers as new soft nanoparticles: design and properties. Organic Chemistry Frontiers, 2021, 8, 4607-4622.	4.5	11
303	In Vitro Validation of the Therapeutic Potential of Dendrimer-Based Nanoformulations against Tumor Stem Cells. International Journal of Molecular Sciences, 2022, 23, 5691.	4.1	11
304	Synthesis of Di- or Tetrafunctionalized Phosphorus Macrocycles. Synthesis, 1995, 1995, 952-956.	2.3	10
305	Title is missing!. Angewandte Chemie, 2003, 115, 1866-1870.	2.0	10
306	First Example of Dendrons as Topological Amplifiers. European Journal of Inorganic Chemistry, 2006, 2006, 2556-2560.	2.0	10

#	Article	IF	CITATIONS
307	DNA hybridization induced selective encapsulation of small dye molecules in dendrimer based microcapsules. Analyst, The, 2010, 135, 2939.	3.5	10
308	A viologen phosphorus dendritic molecule as a carrier of ATP and Mant-ATP: spectrofluorimetric and NMR studies. New Journal of Chemistry, 2014, 38, 6212-6222.	2.8	10
309	Tricoordinated phosphorus-containing macrocycles: New synthetic strategies. Heteroatom Chemistry, 1995, 6, 313-318.	0.7	9
310	Pseudo-halogen behavior of thiophosphoryl azides as a tool for the functionalization of phosphorus macrocycles. Tetrahedron Letters, 2003, 44, 7007-7010.	1.4	9
311	(+)â€Cinchonineâ€Decorated Dendrimers as Recoverable Organocatalysts. ChemCatChem, 2015, 7, 2698-2704.	3.7	9
312	Ordered Layered Dendrimers Constructed from Two Known Dendrimer Families: Inheritance and Emergence of Properties. Chemistry - A European Journal, 2016, 22, 10736-10742.	3.3	9
313	Fluorescent phosphorus dendrimers excited by two photons: synthesis, two-photon absorption properties and biological uses. Beilstein Journal of Organic Chemistry, 2019, 15, 2287-2303.	2.2	9
314	Phosphorus dendrimers functionalised with nitrogen ligands, for catalysis and biology. Dalton Transactions, 2019, 48, 7483-7493.	3.3	9
315	Generation Dependent Effects and Entrance to Mitochondria of Hybrid Dendrimers on Normal and Cancer Neuronal Cells In Vitro. Biomolecules, 2020, 10, 427.	4.0	9
316	Polyazaphosphorus macrocycles: Synthesis, reactivity, complexation. Heteroatom Chemistry, 1991, 2, 45-54.	0.7	8
317	Multiplexing technology for in vitro diagnosis of pathogens: the key contribution of phosphorus dendrimers. Science China Materials, 2018, 61, 1454-1461.	6.3	8
318	Hydrogels of Polycationic Acetohydrazone-Modified Phosphorus Dendrimers for Biomedical Applications: Gelation Studies and Nucleic Acid Loading. Pharmaceutics, 2018, 10, 120.	4.5	8
319	Multivalent Copper(II)-Conjugated Phosphorus Dendrimers with Noteworthy <i>In Vitro</i> and <i>In Vivo</i> Antitumor Activities: A Concise Overview. Molecular Pharmaceutics, 2021, 18, 65-73.	4.6	8
320	Synthesis and characterization of phosphorus-containing dendrimers bearing rhodamine derivatives as terminal groups. Arkivoc, 2010, 2010, 318-327.	0.5	8
321	Molecular Modeling, a Tool for Predicting Structural Effects on the Macrocyclization Reaction between Bis(vinyl or allyl) Dialdehydes and Thiophosphonic Bis(hydrazides). Chemische Berichte, 1995, 128, 443-447.	0.2	7
322	Supermolecular Columnar Liquidâ€Crystalline Phosphorus Dendrimers Decorated with Sulfonamide Derivatives. Chemistry - A European Journal, 2014, 20, 17047-17058.	3.3	7
323	Symmetrical and unsymmetrical incorporation of active biological monomers on the surface of phosphorus dendrimers. Tetrahedron, 2017, 73, 1331-1341.	1.9	7
324	Impact of molecular rigidity on the gene delivery efficiency of core–shell tecto dendrimers. Journal of Materials Chemistry B, 2021, 9, 6149-6154.	5.8	7

#	Article	IF	CITATIONS
325	Copper complexes of phosphorus dendrimers and their properties. Inorganica Chimica Acta, 2021, 517, 120212.	2.4	7
326	Dendrimer nanoplatforms for veterinary medicine applications: A concise overview. Drug Discovery Today, 2022, 27, 1251-1260.	6.4	7
327	Synthesis and Characterization of Phosphorus Dendrimers Containing Long, Conjugated Branches. European Journal of Organic Chemistry, 2005, 2005, 1340-1347.	2.4	6
328	Phosphorus dendrimers and dendrons functionalized with the cage ligand tris(1,2â€dimethylhydrazino)diphosphane. Heteroatom Chemistry, 2010, 21, 290-297.	0.7	6
329	BF ₂ complexes of 1,3-diketones on the surface of phosphorus dendrimers: synthesis and study of the photoluminescence properties. Canadian Journal of Chemistry, 2017, 95, 948-953.	1.1	6
330	Synthesis and reactivity of small phosphorus-containing dendritic wedges (dendrons). Arkivoc, 2005, 2002, 151-160.	0.5	6
331	Dendriplex-Impregnated Hydrogels With Programmed Release Rate. Frontiers in Chemistry, 2021, 9, 780608.	3.6	6
332	Engineered Neutral Phosphorous Dendrimers Protect Mouse Cortical Neurons and Brain Organoids from Excitotoxic Death. International Journal of Molecular Sciences, 2022, 23, 4391.	4.1	6
333	Synthesis of dendrimers with phosphine end groups at each generation. Journal of Organometallic Chemistry, 2002, 643-644, 112-124.	1.8	5
334	Customized multiphotonics nanotools for bioapplications: soft organic nanodots as an eco-friendly alternative to quantum dots. Proceedings of SPIE, 2009, , .	0.8	5
335	Cooperative TPA enhancement via through-space interactions in organic nanodots built from dipolar chromophores. Proceedings of SPIE, 2010, , .	0.8	5
336	Thiazoyl phosphines. Design, reactivity, and complexation. Dalton Transactions, 2016, 45, 9695-9703.	3.3	5
337	Layer-by-layer self-assembly of bisdendrons: An unprecedented route to multilayer thin films. Macromolecular Research, 2016, 24, 851-855.	2.4	5
338	Morpholino-functionalized phosphorus dendrimers for precision regenerative medicine: osteogenic differentiation of mesenchymal stem cells. Nanoscale, 2019, 11, 17230-17234.	5.6	5
339	Urea-assisted cooperative assembly of phosphorus dendrimer–zinc oxide hybrid nanostructures. New Journal of Chemistry, 2019, 43, 2141-2147.	2.8	5
340	Design, complexing and catalytic properties of phosphorus thiazoles and benzothiazoles: a concise overview. New Journal of Chemistry, 2019, 43, 16785-16795.	2.8	5
341	ATTEMPTED SYNTHESIS OF PHOSPHORUS CRYPTANDS. Phosphorus, Sulfur and Silicon and the Related Elements, 1991, 56, 123-127.	1.6	4
342	Synthese, Struktur und Reaktivitästabiler PNâ€Heterocyclen mit zwei und sechs Methylenâ€aminâ€Einheiten: [H ₂ CNN(Me)] ₂ P(S)(Ph) und [H ₂ CNN(Me)] ₆ P ₃ N ₃ . Angewandte Chemie, 1993, 10 1508-1510.)5, ^{2.0}	4

#	Article	IF	CITATIONS
343	Phosphorus-Containing N-Methyleneamine Type Compounds: Synthesis, Structure, and Reactivity. Inorganic Chemistry, 1994, 33, 6351-6356.	4.0	4
344	Design of phosphonium ended dendrimers bearing functionalized amines. Tetrahedron Letters, 2009, 50, 4870-4873.	1.4	4
345	Synthesis of dissymmetric phosphorus dendrimers using an unusual protecting group. New Journal of Chemistry, 2018, 42, 8985-8991.	2.8	4
346	Blood Compatibility of Amphiphilic Phosphorous Dendrons—Prospective Drug Nanocarriers. Biomedicines, 2021, 9, 1672.	3.2	4
347	Versatile Reactivity of Cyclic 1,2-Dimethylhydrazinodiphosphines. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2017, 643, 903-908.	1.2	3
348	Engineering CNDP's of dendrimers containing phosphorous interior compositions to produce new emerging properties. Journal of Nanoparticle Research, 2018, 20, 1.	1.9	3
349	First-in-Class Phosphorus Dendritic Framework, a Wide Surface Functional Group Palette Bringing Noteworthy Anti-Cancer and Anti-Tuberculosis Activities: What Lessons to Learn?. Molecules, 2021, 26, 3708.	3.8	3
350	Complexation properties of polyazaphosphorus macrocycles. Inorganica Chimica Acta, 1996, 246, 47-52.	2.4	2
351	Crown Macromolecular Derivatives: Stepwise Design of New Types of Polyfunctionalized Phosphorus Dendrimers. Journal of Organic Chemistry, 2022, , .	3.2	2
352	First-in-Class Anti-Cancer Nanoparticle Copper(Ii) Phosphorus Dendrimers as Pro-Apoptotic Bax Activators. , 2018, , 245-264.		1
353	Engineered phosphorus dendrimers as powerful non-viral nanoplatforms for gene delivery: a great hope for the future of cancer therapeutics. Exploration of Targeted Anti-tumor Therapy, 0, , 50-61.	0.8	1
354	Frontispiece: Synthesis of Onion-Peel Nanodendritic Structures with Sequential Functional Phosphorus Diversity. Chemistry - A European Journal, 2015, 21, n/a-n/a.	3.3	0