
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2859435/publications.pdf Version: 2024-02-01

DEL-FENCLI

#	Article	IF	CITATIONS
1	A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. European Heart Journal, 2016, 37, 2602-2611.	2.2	754
2	Signaling Pathways in Reactive Oxygen Species–Induced Cardiomyocyte Apoptosis. Circulation, 1999, 99, 2934-2941.	1.6	542
3	The Long Noncoding RNA CHRF Regulates Cardiac Hypertrophy by Targeting miR-489. Circulation Research, 2014, 114, 1377-1388.	4.5	525
4	miR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1. Nature Medicine, 2011, 17, 71-78.	30.7	521
5	APF IncRNA regulates autophagy and myocardial infarction by targeting miR-188-3p. Nature Communications, 2015, 6, 6779.	12.8	405
6	CARL lncRNA inhibits anoxia-induced mitochondrial fission and apoptosis in cardiomyocytes by impairing miR-539-dependent PHB2 downregulation. Nature Communications, 2014, 5, 3596.	12.8	388
7	Reactive Oxygen Species-Related Nanoparticle Toxicity in the Biomedical Field. Nanoscale Research Letters, 2020, 15, 115.	5.7	341
8	miR-23a functions downstream of NFATc3 to regulate cardiac hypertrophy. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12103-12108.	7.1	330
9	miR-30 Regulates Mitochondrial Fission through Targeting p53 and the Dynamin-Related Protein-1 Pathway. PLoS Genetics, 2010, 6, e1000795.	3.5	295
10	Critical role of FOXO3a in carcinogenesis. Molecular Cancer, 2018, 17, 104.	19.2	295
11	Circular RNA mediates cardiomyocyte death via miRNA-dependent upregulation of MTP18 expression. Cell Death and Differentiation, 2017, 24, 1111-1120.	11.2	268
12	NLRP3 inflammasome in endothelial dysfunction. Cell Death and Disease, 2020, 11, 776.	6.3	247
13	Differential Effect of Hydrogen Peroxide and Superoxide Anion on Apoptosis and Proliferation of Vascular Smooth Muscle Cells. Circulation, 1997, 96, 3602-3609.	1.6	244
14	MicroRNA-103/107 Regulate Programmed Necrosis and Myocardial Ischemia/Reperfusion Injury Through Targeting FADD. Circulation Research, 2015, 117, 352-363.	4.5	227
15	miR-484 regulates mitochondrial network through targeting Fis1. Nature Communications, 2012, 3, 781.	12.8	192
16	T-cell Immunoglobulin and ITIM Domain (TIGIT) Receptor/Poliovirus Receptor (PVR) Ligand Engagement Suppresses Interferon-l ³ Production of Natural Killer Cells via Î ² -Arrestin 2-mediated Negative Signaling. Journal of Biological Chemistry, 2014, 289, 17647-17657.	3.4	192
17	A review of sources, multimedia distribution and health risks of novel fluorinated alternatives. Ecotoxicology and Environmental Safety, 2019, 182, 109402.	6.0	180
18	Reactive oxygen species induce apoptosis of vascular smooth muscle cell. FEBS Letters, 1997, 404, 249-252.	2.8	176

#	Article	IF	CITATIONS
19	Foxo3a Inhibits Cardiomyocyte Hypertrophy through Transactivating Catalase. Journal of Biological Chemistry, 2008, 283, 29730-29739.	3.4	167
20	In Cardiomyocyte Hypoxia, Insulin-Like Growth Factor-I-Induced Antiapoptotic Signaling Requires Phosphatidylinositol-3-OH-Kinase-Dependent and Mitogen-Activated Protein Kinase-Dependent Activation of the Transcription Factor cAMP Response Element-Binding Protein. Circulation, 2001, 104, 2088-2094.	1.6	159
21	Phosphorylation by Protein Kinase CK2. Molecular Cell, 2002, 10, 247-258.	9.7	151
22	Circular RNAs: A novel type of non-coding RNA and their potential implications in antiviral immunity. International Journal of Biological Sciences, 2017, 13, 1497-1506.	6.4	144
23	Oxidative Modification of miR-184 Enables It to Target Bcl-xL and Bcl-w. Molecular Cell, 2015, 59, 50-61.	9.7	141
24	Emerging Function and Clinical Values of Exosomal MicroRNAs in Cancer. Molecular Therapy - Nucleic Acids, 2019, 16, 791-804.	5.1	138
25	miR-9 and NFATc3 Regulate Myocardin in Cardiac Hypertrophy. Journal of Biological Chemistry, 2010, 285, 11903-11912.	3.4	135
26	The Role of MicroRNAs in Myocardial Infarction: From Molecular Mechanism to Clinical Application. International Journal of Molecular Sciences, 2017, 18, 745.	4.1	133
27	Long Noncoding RNA CPR (Cardiomyocyte Proliferation Regulator) Regulates Cardiomyocyte Proliferation and Cardiac Repair. Circulation, 2019, 139, 2668-2684.	1.6	125
28	Bio-multifunctional alginate/chitosan/fucoidan sponges with enhanced angiogenesis and hair follicle regeneration for promoting full-thickness wound healing. Materials and Design, 2020, 193, 108863.	7.0	120
29	Mitofusin 1 Is Negatively Regulated by MicroRNA 140 in Cardiomyocyte Apoptosis. Molecular and Cellular Biology, 2014, 34, 1788-1799.	2.3	116
30	MicroRNAs coordinate an alternative splicing network during mouse postnatal heart development. Genes and Development, 2010, 24, 653-658.	5.9	114
31	Control of mitochondrial activity by miRNAs. Journal of Cellular Biochemistry, 2012, 113, 1104-1110.	2.6	113
32	Potential Mechanisms of Action of Curcumin for Cancer Prevention: Focus on Cellular Signaling Pathways and miRNAs. International Journal of Biological Sciences, 2019, 15, 1200-1214.	6.4	113
33	Apoptosis Repressor With Caspase Recruitment Domain Is Required for Cardioprotection in Response to Biomechanical and Ischemic Stress. Circulation, 2006, 113, 1203-1212.	1.6	109
34	MDRL IncRNA Regulates the Processing of miR-484 Primary Transcript by Targeting miR-361. PLoS Genetics, 2014, 10, e1004467.	3.5	108
35	Cardiac Hypertrophy Is Positively Regulated by MicroRNA miR-23a. Journal of Biological Chemistry, 2012, 287, 589-599.	3.4	105
36	Circular RNAs: Characteristics, Function and Clinical Significance in Hepatocellular Carcinoma. Cancers, 2018, 10, 258.	3.7	104

#	Article	IF	CITATIONS
37	p53 Initiates Apoptosis by Transcriptionally Targeting the Antiapoptotic Protein ARC. Molecular and Cellular Biology, 2008, 28, 564-574.	2.3	100
38	The functional roles of exosomal long non-coding RNAs in cancer. Cellular and Molecular Life Sciences, 2019, 76, 2059-2076.	5.4	100
39	Biogenesis of circular <scp>RNA</scp> s and their roles in cardiovascular development and pathology. FEBS Journal, 2018, 285, 220-232.	4.7	97
40	Foxo3a Regulates Apoptosis by Negatively Targeting miR-21. Journal of Biological Chemistry, 2010, 285, 16958-16966.	3.4	95
41	The piRNA CHAPIR regulates cardiac hypertrophy by controlling METTL3-dependent N6-methyladenosine methylation of Parp10 mRNA. Nature Cell Biology, 2020, 22, 1319-1331.	10.3	93
42	Requirement for Protein Kinase C in Reactive Oxygen Species–Induced Apoptosis of Vascular Smooth Muscle Cells. Circulation, 1999, 100, 967-973.	1.6	91
43	Superoxide induces apoptosis in cardiomyocytes, but proliferation and expression of transforming growth factor-β1 in cardiac fibroblasts. FEBS Letters, 1999, 448, 206-210.	2.8	90
44	miR-761 regulates the mitochondrial network by targeting mitochondrial fission factor. Free Radical Biology and Medicine, 2013, 65, 371-379.	2.9	88
45	E2F1-dependent miR-421 regulates mitochondrial fragmentation and myocardial infarction by targeting Pink1. Nature Communications, 2015, 6, 7619.	12.8	87
46	Apoptosis Repressor with Caspase Recruitment Domain Contributes to Chemotherapy Resistance by Abolishing Mitochondrial Fission Mediated by Dynamin-Related Protein-1. Cancer Research, 2009, 69, 492-500.	0.9	85
47	Down-regulation of Catalase and Oxidative Modification of Protein Kinase CK2 Lead to the Failure of Apoptosis Repressor with Caspase Recruitment Domain to Inhibit Cardiomyocyte Hypertrophy. Journal of Biological Chemistry, 2008, 283, 5996-6004.	3.4	82
48	Insights into the regulatory role of circRNA in angiogenesis and clinical implications. Atherosclerosis, 2020, 298, 14-26.	0.8	79
49	Circulating MiR-17-5p, MiR-126-5p and MiR-145-3p Are Novel Biomarkers for Diagnosis of Acute Myocardial Infarction. Frontiers in Physiology, 2019, 10, 123.	2.8	78
50	The Long Noncoding RNA D63785 Regulates Chemotherapy Sensitivity in Human Gastric Cancer by Targeting miR-422a. Molecular Therapy - Nucleic Acids, 2018, 12, 405-419.	5.1	76
51	Non-coding RNAs Function as Immune Regulators in Teleost Fish. Frontiers in Immunology, 2018, 9, 2801.	4.8	67
52	Blood TfR+ exosomes separated by a pH-responsive method deliver chemotherapeutics for tumor therapy. Theranostics, 2019, 9, 7680-7696.	10.0	67
53	Understanding cardiomyocyte proliferation: an insight into cell cycle activity. Cellular and Molecular Life Sciences, 2017, 74, 1019-1034.	5.4	63
54	MicroRNA as a Therapeutic Target in Cardiac Remodeling. BioMed Research International, 2017, 2017, 1-25.	1.9	63

#	Article	IF	CITATIONS
55	tsRNAs: Novel small molecules from cell function and regulatory mechanism to therapeutic targets. Cell Proliferation, 2021, 54, e12977.	5.3	59
56	Emerging Function and Clinical Significance of Exosomal circRNAs in Cancer. Molecular Therapy - Nucleic Acids, 2020, 21, 367-383.	5.1	58
57	A Pre-microRNA-149 (miR-149) Genetic Variation Affects miR-149 Maturation and Its Ability to Regulate the Puma Protein in Apoptosis. Journal of Biological Chemistry, 2013, 288, 26865-26877.	3.4	56
58	The role of postâ€ŧranslational modifications in cardiac hypertrophy. Journal of Cellular and Molecular Medicine, 2019, 23, 3795-3807.	3.6	56
59	MicroRNAs in Cardiac Apoptosis. Journal of Cardiovascular Translational Research, 2010, 3, 219-224.	2.4	55
60	Novel Cardiac Apoptotic Pathway. Circulation, 2008, 118, 2268-2276.	1.6	54
61	The role of miR-214 in cardiovascular diseases. European Journal of Pharmacology, 2017, 816, 138-145.	3.5	54
62	ARC is a critical cardiomyocyte survival switch in doxorubicin cardiotoxicity. Journal of Molecular Medicine, 2009, 87, 401-410.	3.9	52
63	MicroRNAs or Long Noncoding RNAs in Diagnosis and Prognosis of Coronary Artery Disease. , 2019, 10, 353.		50
64	Circulating miR-26a-1, miR-146a and miR-199a-1 are potential candidate biomarkers for acute myocardial infarction. Molecular Medicine, 2019, 25, 18.	4.4	50
65	<scp>KCNQ</scp> 1 <scp>OT</scp> 1, <scp>HIF</scp> 1Aâ€ <scp>AS</scp> 2 and <scp>APOA</scp> 1â€ <scp>AS</scp> are promising novel biomarkers for diagnosis of coronary artery disease. Clinical and Experimental Pharmacology and Physiology, 2019, 46, 635-642.	1.9	50
66	Long noncoding RNA gastric cancer-related lncRNA1 mediates gastric malignancy through miRNA-885-3p and cyclin-dependent kinase 4. Cell Death and Disease, 2018, 9, 607.	6.3	49
67	MicroRNAs in Cardiac Autophagy: Small Molecules and Big Role. Cells, 2018, 7, 104.	4.1	48
68	The biological function and clinical significance of SF3B1 mutations in cancer. Biomarker Research, 2020, 8, 38.	6.8	47
69	Marine polysaccharide-based composite hydrogels containing fucoidan: Preparation, physicochemical characterization, and biocompatible evaluation. International Journal of Biological Macromolecules, 2021, 183, 1978-1986.	7.5	47
70	Epigenetic regulation of long non-coding RNAs in gastric cancer. Oncotarget, 2018, 9, 19443-19458.	1.8	47
71	MiR-485-5p modulates mitochondrial fission through targeting mitochondrial anchored protein ligase in cardiac hypertrophy. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 2871-2881.	3.8	45
72	The Multifaceted Roles of Pyroptotic Cell Death Pathways in Cancer. Cancers, 2019, 11, 1313.	3.7	45

#	Article	IF	CITATIONS
73	Circulating miRâ€22â€5p and miRâ€122â€5p are promising novel biomarkers for diagnosis of acute myocardial infarction. Journal of Cellular Physiology, 2019, 234, 4778-4786.	4.1	45
74	Transcription Factor Foxo3a Prevents Apoptosis by Regulating Calcium through the Apoptosis Repressor with Caspase Recruitment Domain. Journal of Biological Chemistry, 2013, 288, 8491-8504.	3.4	44
75	PIWI family emerging as a decisive factor of cell fate: An overview. European Journal of Cell Biology, 2017, 96, 746-757.	3.6	44
76	The Role and Molecular Mechanism of Non-Coding RNAs in Pathological Cardiac Remodeling. International Journal of Molecular Sciences, 2017, 18, 608.	4.1	42
77	Cu,Zn Dopants Boost Electron Transfer of Carbon Dots for Antioxidation. Small, 2021, 17, e2102178.	10.0	40
78	Mitochondrial Protein Translation: Emerging Roles and Clinical Significance in Disease. Frontiers in Cell and Developmental Biology, 2021, 9, 675465.	3.7	39
79	Mitochondrial function in cardiac hypertrophy. International Journal of Cardiology, 2013, 167, 1118-1125.	1.7	37
80	Circulating miRNAs as biomarkers for early diagnosis of coronary artery disease. Expert Opinion on Therapeutic Patents, 2018, 28, 591-601.	5.0	37
81	miRNAs as potential therapeutic targets and diagnostic biomarkers for cardiovascular disease with a particular focus on WO2010091204. Expert Opinion on Therapeutic Patents, 2017, 27, 1021-1029.	5.0	36
82	Akt-phosphorylated Mitogen-activated Kinase-activating Death Domain Protein (MADD) Inhibits TRAIL-induced Apoptosis by Blocking Fas-associated Death Domain (FADD) Association with Death Receptor 4. Journal of Biological Chemistry, 2010, 285, 22713-22722.	3.4	34
83	Knockdown of Mtfp1 can minimize doxorubicin cardiotoxicity by inhibiting Dnm1lâ€mediated mitochondrial fission. Journal of Cellular and Molecular Medicine, 2017, 21, 3394-3404.	3.6	34
84	The Role of MicroRNA and LncRNA–MicroRNA Interactions in Regulating Ischemic Heart Disease. Journal of Cardiovascular Pharmacology and Therapeutics, 2017, 22, 105-111.	2.0	34
85	Emerging Roles of SRSF3 as a Therapeutic Target for Cancer. Frontiers in Oncology, 2020, 10, 577636.	2.8	34
86	Recent Advances: Molecular Mechanism of RNA Oxidation and Its Role in Various Diseases. Frontiers in Molecular Biosciences, 2020, 7, 184.	3.5	34
87	Circular RNAs: Functions and Clinical Significance in Cardiovascular Disease. Frontiers in Cell and Developmental Biology, 2020, 8, 584051.	3.7	34
88	The Emerging Roles of Autophagy-Related MicroRNAs in Cancer. International Journal of Biological Sciences, 2021, 17, 134-150.	6.4	34
89	miR-23a binds to p53 and enhances its association with miR-128 promoter. Scientific Reports, 2015, 5, 16422.	3.3	33
90	The involvement of post-translational modifications in cardiovascular pathologies: Focus on SUMOylation, neddylation, succinylation, and prenylation. Journal of Molecular and Cellular Cardiology, 2020, 138, 49-58.	1.9	33

#	Article	IF	CITATIONS
91	The emerging function and clinical significance of circRNAs in Thyroid Cancer and Autoimmune Thyroid Diseases. International Journal of Biological Sciences, 2021, 17, 1731-1741.	6.4	33
92	The Function and Therapeutic Potential of Epstein-Barr Virus-Encoded MicroRNAs in Cancer. Molecular Therapy - Nucleic Acids, 2019, 17, 657-668.	5.1	31
93	Brain-derived neurotrophic factor mimetic, 7,8-dihydroxyflavone, protects against myocardial ischemia by rebalancing optic atrophy 1 processing. Free Radical Biology and Medicine, 2019, 145, 187-197.	2.9	31
94	Reactive Oxygen Species Related Noncoding RNAs as Regulators of Cardiovascular Diseases. International Journal of Biological Sciences, 2019, 15, 680-687.	6.4	31
95	Long noncoding RNA XXYLT1-AS2 regulates proliferation and adhesion by targeting the RNA binding protein FUS in HUVEC. Atherosclerosis, 2020, 298, 58-69.	0.8	30
96	Alteration of MDM2 by the Small Molecule YF438 Exerts Antitumor Effects in Triple-Negative Breast Cancer. Cancer Research, 2021, 81, 4027-4040.	0.9	30
97	Effects of mi <scp>RNA</scp> s on myocardial apoptosis by modulating mitochondria related proteins. Clinical and Experimental Pharmacology and Physiology, 2017, 44, 431-440.	1.9	29
98	Non-coding RNA-linked epigenetic regulation in cardiac hypertrophy. International Journal of Biological Sciences, 2018, 14, 1133-1141.	6.4	29
99	The Underlying Mechanisms of Noncoding RNAs in the Chemoresistance of Hepatocellular Carcinoma. Molecular Therapy - Nucleic Acids, 2020, 21, 13-27.	5.1	29
100	MADD Knock-Down Enhances Doxorubicin and TRAIL Induced Apoptosis in Breast Cancer Cells. PLoS ONE, 2013, 8, e56817.	2.5	29
101	Mitochondrial fission controls DNA fragmentation by regulating endonuclease G. Free Radical Biology and Medicine, 2010, 49, 622-631.	2.9	28
102	Circular RNA Expression Profiles and the Pro-tumorigenic Function of CircRNA_10156 in Hepatitis B Virus-Related Liver Cancer. International Journal of Medical Sciences, 2020, 17, 1351-1365.	2.5	28
103	Role of noncoding RNAs in regulation of cardiac cell death and cardiovascular diseases. Cellular and Molecular Life Sciences, 2018, 75, 291-300.	5.4	27
104	Foxo3a-dependent miR-633 regulates chemotherapeutic sensitivity in gastric cancer by targeting Fas-associated death domain. RNA Biology, 2019, 16, 233-248.	3.1	27
105	Autophagy in cardiovascular diseases: role of noncoding RNAs. Molecular Therapy - Nucleic Acids, 2021, 23, 101-118.	5.1	27
106	Combined detection of miR-21-5p, miR-30a-3p, miR-30a-5p, miR-155-5p, miR-216a and miR-217 for screening of early heart failure diseases. Bioscience Reports, 2020, 40, .	2.4	27
107	MicroRNA-34 Family and Its Role in Cardiovascular Disease. Critical Reviews in Eukaryotic Gene Expression, 2015, 25, 293-297.	0.9	26
108	Mitochondrial metabolism is inhibited by the <scp>HIF</scp> 1î±â€ <scp>MYC</scp> â€ <scp>PGC</scp> â€1î² axi <scp>BRAF</scp> V600E thyroid cancer. FEBS Journal, 2019, 286, 1420-1436.	s in 4.7	25

#	Article	IF	CITATIONS
109	Circulating MicroRNAs: Biogenesis and Clinical Significance in Acute Myocardial Infarction. Frontiers in Physiology, 2020, 11, 1088.	2.8	25
110	Regulation of pyroptosis in cardiovascular pathologies: Role of noncoding RNAs. Molecular Therapy - Nucleic Acids, 2021, 25, 220-236.	5.1	25
111	Mitochondrial network in the heart. Protein and Cell, 2012, 3, 410-418.	11.0	24
112	MicroRNA-2861 regulates programmed necrosis in cardiomyocyte by impairing adenine nucleotide translocase 1 expression. Free Radical Biology and Medicine, 2016, 91, 58-67.	2.9	24
113	Clinical significance of circulating microRNAs as diagnostic biomarkers for coronary artery disease. Journal of Cellular and Molecular Medicine, 2020, 24, 1146-1150.	3.6	24
114	Therapeutic potential and recent advances on targeting mitochondrial dynamics in cardiac hypertrophy: A concise review. Molecular Therapy - Nucleic Acids, 2021, 25, 416-443.	5.1	24
115	Crosstalk between MicroRNAs and Peroxisome Proliferator-Activated Receptors and Their Emerging Regulatory Roles in Cardiovascular Pathophysiology. PPAR Research, 2018, 2018, 1-11.	2.4	23
116	Mitophagy imbalance in cardiomyocyte ischaemia/reperfusion injury. Acta Physiologica, 2019, 225, e13228.	3.8	23
117	The mitochondrial ubiquitin ligase plays an antiâ€∎poptotic role in cardiomyocytes by regulating mitochondrial fission. Journal of Cellular and Molecular Medicine, 2016, 20, 2278-2288.	3.6	21
118	A potent protective effect of baicalein on liver injury by regulating mitochondria-related apoptosis. Apoptosis: an International Journal on Programmed Cell Death, 2020, 25, 412-425.	4.9	21
119	Mitochondrial protein 18 (MTP18) plays a pro-apoptotic role in chemotherapy-induced gastric cancer cell apoptosis. Oncotarget, 2017, 8, 56582-56597.	1.8	20
120	Proteomic insights into synaptic signaling in the brain: the past, present and future. Molecular Brain, 2021, 14, 37.	2.6	19
121	Cardiomyocyte mitochondrial dynamic-related IncRNA 1 (CMDL-1) may serve as a potential therapeutic target in doxorubicin cardiotoxicity. Molecular Therapy - Nucleic Acids, 2021, 25, 638-651.	5.1	18
122	Mitochondrial fission leads to Smac/DIABLO release quenched by ARC. Apoptosis: an International Journal on Programmed Cell Death, 2010, 15, 1187-1196.	4.9	17
123	The role of K63â€linked polyubiquitination in cardiac hypertrophy. Journal of Cellular and Molecular Medicine, 2018, 22, 4558-4567.	3.6	17
124	Role of Circular RNAs in the Pathogenesis of Cardiovascular Disease. Journal of Cardiovascular Translational Research, 2020, 13, 572-583.	2.4	17
125	Role of RNA Oxidation in Neurodegenerative Diseases. International Journal of Molecular Sciences, 2020, 21, 5022.	4.1	16
126	Selective extracellular arginine deprivation by a single injection of cellular non-uptake arginine deiminase nanocapsules for sustained tumor inhibition. Nanoscale, 2020, 12, 24030-24043.	5.6	16

#	Article	IF	CITATIONS
127	The Stability Maintenance of Protein Drugs in Organic Coatings Based on Nanogels. Pharmaceutics, 2020, 12, 115.	4.5	16
128	CircHIPK3 Plays Vital Roles in Cardiovascular Disease. Frontiers in Cardiovascular Medicine, 2021, 8, 733248.	2.4	16
129	Nanomedicines for the Efficient Treatment of Intracellular Bacteria: The "ART―Principle. Frontiers in Chemistry, 2021, 9, 775682.	3.6	16
130	Development of hydroxamate-based histone deacetylase inhibitors containing 1,2,4-oxadiazole moiety core with antitumor activities. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 15-21.	2.2	15
131	Insights into the regulatory role of Plexin D1 signalling in cardiovascular development and diseases. Journal of Cellular and Molecular Medicine, 2021, 25, 4183-4194.	3.6	15
132	Circular RNAs act as regulators of autophagy in cancer. Molecular Therapy - Oncolytics, 2021, 21, 242-254.	4.4	15
133	Phosphorylation of apoptosis repressor with caspase recruitment domain by protein kinase CK2 contributes to chemotherapy resistance by inhibiting doxorubicin induced apoptosis. Oncotarget, 2015, 6, 27700-27713.	1.8	15
134	Mitochondrial Ca2+ Homeostasis: Emerging Roles and Clinical Significance in Cardiac Remodeling. International Journal of Molecular Sciences, 2022, 23, 3025.	4.1	15
135	Glucose-responsive nanogels efficiently maintain the stability and activity of therapeutic enzymes. Nanotechnology Reviews, 2022, 11, 1511-1524.	5.8	14
136	Pathogenic mechanisms and the potential clinical value of circFoxo3 in cancers. Molecular Therapy - Nucleic Acids, 2021, 23, 908-917.	5.1	13
137	Noncoding RNA-mediated macrophage and cancer cell crosstalk in hepatocellular carcinoma. Molecular Therapy - Oncolytics, 2022, 25, 98-120.	4.4	12
138	Oxidative RNA Damage in the Pathogenesis and Treatment of Type 2 Diabetes. Frontiers in Physiology, 2022, 13, 725919.	2.8	12
139	<scp>MADD</scp> Is a Downstream Target of <scp>PTEN</scp> in Triggering Apoptosis. Journal of Cellular Biochemistry, 2014, 115, 261-270.	2.6	11
140	The Endoplasmic Reticulum Adaptor Protein ERAdP Initiates NK Cell Activation via the Ubc13-Mediated NF-κB Pathway. Journal of Immunology, 2015, 194, 1292-1303.	0.8	10
141	Function and regulation of mitofusin 2 in cardiovascular physiology and pathology. European Journal of Cell Biology, 2018, 97, 474-482.	3.6	10
142	Mitochondrial protein 18 is a positive apoptotic regulator in cardiomyocytes under oxidative stress. Clinical Science, 2019, 133, 1067-1084.	4.3	10
143	The circRNA-miRNA/RBP regulatory network in myocardial infarction. Frontiers in Pharmacology, 0, 13,	3.5	10
144	Translational Control of COVID-19 and Its Therapeutic Implication. Frontiers in Immunology, 2022, 13, 857490.	4.8	9

#	Article	IF	CITATIONS
145	Autophagy regulation in teleost fish: A double-edged sword. Aquaculture, 2022, 558, 738369.	3.5	9
146	A FGFR1 inhibitor patent review: progress since 2010. Expert Opinion on Therapeutic Patents, 2017, 27, 439-454.	5.0	8
147	Cardioprotective role of phyllanthin against myocardial ischemiaâ€reperfusion injury by alleviating oxidative stress and inflammation with increased adenosine triphosphate levels in the mice model. Environmental Toxicology, 2021, 36, 33-44.	4.0	8
148	Expression and Prognostic Characteristics of m6A RNA Methylation Regulators in Colon Cancer. International Journal of Molecular Sciences, 2021, 22, 2134.	4.1	8
149	Large-scale rapid detection of circulating microRNAs in plasma for diagnosis and screening of specific diseases. Nanoscale, 2019, 11, 16879-16885.	5.6	7
150	MicroRNAs in cardiac hypertrophy: angels or devils. Wiley Interdisciplinary Reviews RNA, 2011, 2, 124-134.	6.4	6
151	Mitochondrial Ubiquitin Ligase in Cardiovascular Disorders. Advances in Experimental Medicine and Biology, 2017, 982, 327-333.	1.6	6
152	The role of mitochondrial fusion and fission in the process of cardiac oxidative stress. Histology and Histopathology, 2020, 35, 541-552.	0.7	6
153	Transferrin guided quasi-nanocuboid as tetra-enzymic mimics and biosensing applications. Talanta, 2022, 240, 123138.	5.5	6
154	Systematically Displaying the Pathogenesis of Keratoconus via Multi-Level Related Gene Enrichment-Based Review. Frontiers in Medicine, 2021, 8, 770138.	2.6	6
155	PiRNAs link epigenetic modifications to reprogramming. Histology and Histopathology, 2014, 29, 1489-97.	0.7	6
156	A novel c.2179T>C mutation blocked the intracellular transport of <i>PHEX</i> protein and caused Xâ€linked hypophosphatemic rickets in a Chinese family. Molecular Genetics & Genomic Medicine, 2020, 8, e1262.	1.2	5
157	Interplay of Phosphorylated Apoptosis Repressor with CARD, Casein Kinase-2 and Reactive Oxygen Species in Regulating Endothelin-1-Induced Cardiomyocyte Hypertrophy. Iranian Journal of Basic Medical Sciences, 2013, 16, 928-35.	1.0	5
158	The dark side of synaptic proteins in tumours. British Journal of Cancer, 2022, 127, 1184-1192.	6.4	5
159	Patterned vascularization in a directional iceâ€ŧemplated scaffold of decellularized matrix. Engineering in Life Sciences, 2021, 21, 683-692.	3.6	4
160	Identification of Extrachromosomal Linear microDNAs Interacted with microRNAs in the Cell Nuclei. Cells, 2019, 8, 111.	4.1	3
161	Comparison the sensitivity of amphibian metamorphosis assays with NF 48 stage and NF 51 stage Xenopus laevis tadpoles. Toxicology Mechanisms and Methods, 2019, 29, 421-427.	2.7	3
162	Role of apoptosis repressor with caspase recruitment domain (arc) in cancer (Review). Oncology Letters, 2019, 18, 5691-5698.	1.8	3

#	Article	IF	CITATIONS
163	Sensitive naked-eye detection of telomerase activity based on exponential amplification reaction and lateral flow assay. Analytical and Bioanalytical Chemistry, 2022, 414, 6139-6147.	3.7	3
164	Long Non-Coding RNAs: Crucial Players of Cardiomyocyte Apoptosis. Journal of Cardiology and Cardiovascular Sciences, 2019, 3, 1-9.	0.4	2
165	Universal probe-based intermediate primer-triggered qPCR (UPIP-qPCR) for SNP genotyping. BMC Genomics, 2021, 22, 850.	2.8	2
166	<scp>BRAF V600E</scp> protect from cell death via inhibition of the mitochondrial permeability transition in papillary and anaplastic thyroid cancers. Journal of Cellular and Molecular Medicine, 0, , .	3.6	2
167	ZNF668. Anti-Cancer Drugs, 2021, Publish Ahead of Print, .	1.4	1
168	Low temperature exerts protective effects by inhibiting mitochondria-mediated apoptosis pathway following pressure injury to rat muscle. Revista Da Escola De Enfermagem Da U S P, 2021, 55, e20200319.	0.9	0
169	Cu,Zn Dopants Boost Electron Transfer of Carbon Dots for Antioxidation (Small 31/2021). Small, 2021, 17, 2170162.	10.0	0
170	Editorial: Oxidative Damage of RNA: Structure, Function, and Biological Implications - From Nucleotides to Short and Long RNAs in Chemistry and Biology. Frontiers in Molecular Biosciences, 2022, 9, 853725.	3.5	0