Joaquin Arias-Pardilla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2859374/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Protic ammonium bio-based ionic liquid crystal lubricants. Tribology International, 2021, 158, 106917.	5.9	11
2	Effect of temperature on the rheological behavior of a new aqueous liquid crystal bio-lubricant. Journal of Molecular Liquids, 2020, 301, 112406.	4.9	16
3	Ionic Liquids in Surface Protection of Aluminum and Its Alloys. , 2019, , .		Ο
4	Rheological study of new dispersions of carbon nanotubes in the ionic liquid 1-ethyl-3-methylimidazolium dicyanamide. Journal of Molecular Liquids, 2019, 278, 368-375.	4.9	25
5	Epoxy resin coatings modified by ionic liquid. Study of abrasion resistance. EXPRESS Polymer Letters, 2019, 13, 303-310.	2.1	17
6	Antiwear performance of ionic liquid+graphene dispersions with anomalous viscosity-temperature behavior. Tribology International, 2018, 122, 200-209.	5.9	41
7	Electrochemical treatment of aluminium alloy 7075 in aqueous solutions of imidazolium phosphonate and phosphate ionic liquids and scratch resistance of the resultant materials. Tribology International, 2017, 113, 65-75.	5.9	6
8	Self-lubricating, wear resistant protic ionic liquid-epoxy resin. EXPRESS Polymer Letters, 2017, 11, 219-229.	2.1	22
9	Surface Coating from Phosphonate Ionic Liquid Electrolyte for the Enhancement of the Tribological Performance of Magnesium Alloy. ACS Applied Materials & Interfaces, 2015, 7, 10337-10347.	8.0	26
10	Ionic Liquids in Surface Protection. , 2015, , 533-561.		7
11	Electrochemical Kinetics in Dense, Reactive and Wet Gels. Biomimicking Reactions and Devices. Molecular Crystals and Liquid Crystals, 2012, 555, 295-305.	0.9	2
12	Simultaneous Smart Actuating-Sensing Devices Based on Conducting Polymers. , 2012, , .		1
13	Biomimetic electrochemistry from conducting polymers. A review. Electrochimica Acta, 2012, 84, 112-128.	5.2	269
14	Synthesis, electropolymerization and characterization of a cross-linked PEDOT derivative. Journal of Materials Chemistry, 2012, 22, 4944.	6.7	20
15	Electropolymerization of naphthaleneamidinemonoimide-modified poly(thiophene). Physical Chemistry Chemical Physics, 2011, 13, 16513.	2.8	14
16	Electropolymerization and characterization of COOH-functionalized poly(3,4-ethylenedioxythiophene): lonic exchanges. Electrochimica Acta, 2011, 56, 10238-10245.	5.2	13
17	Characterization of the movement of polypyrrole–dodecylbenzenesulfonate–perchlorate/tape artificial muscles. Faradaic control of reactive artificial molecular motors and muscles. Electrochimica Acta, 2011, 56, 3721-3726.	5.2	68
18	Self-supported semi-interpenetrating polymer networks as reactive ambient sensors. Journal of Electroanalytical Chemistry, 2011, 652, 37-43.	3.8	15

JOAQUIN ARIAS-PARDILLA

#	Article	IF	CITATIONS
19	Synthesis, electropolymerization and oxidation kinetics of an anthraquinone-functionalized poly(3,4-ethylenedioxythiophene). Electrochimica Acta, 2010, 55, 1535-1542.	5.2	33
20	Synthesis and luminescence of poly(phenylacetylene)s with pendant iridium complexes and carbazole groups. Journal of Polymer Science Part A, 2010, 48, 3744-3757.	2.3	22
21	Polypyrrole freeâ€standing electrodes sense temperature or current during reaction. Polymer International, 2010, 59, 337-342.	3.1	19
22	Sensing and Tactile Artificial Muscles from Reactive Materials. Sensors, 2010, 10, 2638-2674.	3.8	89
23	Reactive polymer films. Synthetic Metals, 2010, 160, 425-431.	3.9	18
24	Reduction and Oxidation Doping Kinetics of an Electropolymerized Donorâ^'Acceptor Low-Bandgap Conjugated Copolymer. Journal of Physical Chemistry B, 2010, 114, 12777-12784.	2.6	28
25	Arsenic species interactions with a porous carbon electrode as determined with an electrochemical quartz crystal microbalance. Electrochimica Acta, 2009, 54, 3996-4004.	5.2	17
26	Electrochemical deposition of platinum nanoparticles on different carbon supports and conducting polymers. Journal of Applied Electrochemistry, 2008, 38, 259-268.	2.9	129
27	Tuning the electroactivity of conductive polymer at physiological pH. Electrochimica Acta, 2007, 52, 2978-2986.	5.2	32
28	Study of the chemical copolymerization of 2-aminoterephthalic acid and aniline European Polymer Journal, 2006, 42, 1521-1532.	5.4	37
29	Study of redox mechanism of poly(o-aminophenol) using in situ techniques: evidence of two redox processes. Journal of Electroanalytical Chemistry, 2005, 576, 139-145.	3.8	95
30	Spectroelectrochemical study of the oxidation of diaminophenols on platinum electrodes in acidic medium. Electrochimica Acta, 2005, 50, 5414-5422.	5.2	19
31	Spectroelectrochemical study of the oxidation of aminophenols on platinum electrode in acid medium. Journal of Electroanalytical Chemistry, 2004, 565, 375-383.	3.8	137