Mihir Kumar Purkait

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2859357/publications.pdf

Version: 2024-02-01

166 papers 8,965 citations

53 h-index 43889 91 g-index

172 all docs

 $\begin{array}{c} 172 \\ \text{docs citations} \end{array}$

172 times ranked

8405 citing authors

#	Article	IF	CITATIONS
1	Adsorption characteristics of brilliant green dye on kaolin. Journal of Hazardous Materials, 2009, 161, 387-395.	12.4	510
2	Removal of congo red using activated carbon and its regeneration. Journal of Hazardous Materials, 2007, 145, 287-295.	12.4	502
3	Ultrafiltration of stable oil-in-water emulsion by polysulfone membrane. Journal of Membrane Science, 2008, 325, 427-437.	8.2	443
4	Removal of cationic dyes from aqueous solutions by kaolin: Kinetic and equilibrium studies. Applied Clay Science, 2009, 42, 583-590.	5,2	390
5	Effect of molecular weight of PEG on membrane morphology and transport properties. Journal of Membrane Science, 2008, 309, 209-221.	8.2	386
6	Preparation, characterization and performance studies of polysulfone membranes using PVP as an additive. Journal of Membrane Science, 2008, 315, 36-47.	8.2	313
7	Arsenic adsorption using copper (II) oxide nanoparticles. Chemical Engineering Research and Design, 2012, 90, 1387-1396.	5. 6	252
8	Preparation and characterization of low cost ceramic membranes for micro-filtration applications. Applied Clay Science, 2008, 42, 102-110.	5,2	234
9	Removal of Fe(II) from tap water by electrocoagulation technique. Journal of Hazardous Materials, 2008, 155, 135-143.	12.4	186
10	Novel strategy for synthesis of magnetic dummy molecularly imprinted nanoparticles based on functionalized silica as an efficient sorbent for the determination of acrylamide in potato chips: Optimization by experimental design methodology. Talanta, 2016, 154, 526-532.	5 . 5	186
11	Treatment of fluoride containing drinking water by electrocoagulation using monopolar and bipolar electrode connections. Chemosphere, 2008, 73, 1393-1400.	8.2	181
12	Green synthesis and environmental application of iron-based nanomaterials and nanocomposite: A review. Chemosphere, 2020, 259, 127509.	8.2	176
13	A review on the environment-friendly emerging techniques for pretreatment of lignocellulosic biomass: Mechanistic insight and advancements. Chemosphere, 2021, 264, 128523.	8.2	174
14	A novel acorn based adsorbent for the removal of brilliant green. Desalination, 2011, 281, 226-233.	8.2	154
15	Application of central composite design for simultaneous removal of methylene blue and Pb2+ ions by walnut wood activated carbon. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 135, 479-490.	3.9	149
16	Treatment of oily wastewater using low cost ceramic membrane: Comparative assessment of pore blocking and artificial neural network models. Chemical Engineering Research and Design, 2010, 88, 881-892.	5.6	140
17	Rapid removal of Auramine-O and Methylene blue by ZnS:Cu nanoparticles loaded on activated carbon: A response surface methodology approach. Journal of the Taiwan Institute of Chemical Engineers, 2015, 53, 80-91.	5.3	136
18	Application of artificial neural network and response surface methodology for the removal of crystal violet by zinc oxide nanorods loaded on activate carbon: kinetics and equilibrium study. Journal of the Taiwan Institute of Chemical Engineers, 2016, 59, 210-220.	5.3	122

#	Article	IF	Citations
19	MOFs for the treatment of arsenic, fluoride and iron contaminated drinking water: A review. Chemosphere, 2020, 251, 126388.	8.2	116
20	Adsorption of eosin dye on activated carbon and its surfactant based desorption. Journal of Environmental Management, 2005, 76, 135-142.	7.8	114
21	Resistance in series model for micellar enhanced ultrafiltration of eosin dye. Journal of Colloid and Interface Science, 2004, 270, 496-506.	9.4	113
22	Micro and nanocrystalline cellulose derivatives of lignocellulosic biomass: A review on synthesis, applications and advancements. Carbohydrate Polymers, 2020, 250, 116937.	10.2	109
23	Simultaneous removal of dyes onto nanowires adsorbent use of ultrasound assisted adsorption to clean waste water: Chemometrics for modeling and optimization, multicomponent adsorption and kinetic study. Chemical Engineering Research and Design, 2017, 124, 222-237.	5.6	103
24	Kinetic and Equilibrium Studies on the Adsorption of Crystal Violet Dye using Kaolin as an Adsorbent. Separation Science and Technology, 2008, 43, 1382-1403.	2.5	102
25	Selective preparation of zeolite X and A from flyash and its use as catalyst for biodiesel production. Journal of Hazardous Materials, 2015, 297, 101-111.	12.4	98
26	Preparation and characterization of low cost ceramic membranes for mosambi juice clarification. Desalination, 2013, 317, 32-40.	8.2	97
27	Lignocellulosic conversion into value-added products: A review. Process Biochemistry, 2020, 89, 110-133.	3.7	91
28	A review on global perspectives of sustainable development in bioenergy generation. Bioresource Technology, 2022, 348, 126791.	9.6	91
29	Cross flow microfiltration of oil–water emulsions using kaolin based low cost ceramic membranes. Desalination, 2014, 341, 61-71.	8.2	85
30	Cadmium telluride nanoparticles loaded on activated carbon as adsorbent for removal of sunset yellow. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2012, 90, 22-27.	3.9	84
31	Simultaneous removal of methylene blue and Pb ²⁺ ions using ruthenium nanoparticle-loaded activated carbon: response surface methodology. RSC Advances, 2015, 5, 83427-83435.	3.6	83
32	Cloud point extraction of toxic eosin dye using Triton X-100 as nonionic surfactant. Water Research, 2005, 39, 3885-3890.	11.3	82
33	Novel synthesis of nanocomposite for the extraction of Sildenafil Citrate (Viagra) from water and urine samples: Process screening and optimization. Ultrasonics Sonochemistry, 2017, 38, 463-472.	8.2	79
34	Highly efficient simultaneous biosorption of Hg 2+, Pb 2+ and Cu 2+ by Live yeast Yarrowia lipolytica 70562 following response surface methodology optimization: Kinetic and isotherm study. Journal of Industrial and Engineering Chemistry, 2017, 48, 162-172.	5.8	79
35	Ultrasonic assisted removal of methylene blue on ultrasonically synthesized zinc hydroxide nanoparticles on activated carbon prepared from wood of cherry tree: Experimental design methodology and artificial neural network. Journal of Molecular Liquids, 2017, 229, 114-124.	4.9	79
36	Cross-Flow Microfiltration of Industrial Oily Wastewater: Experimental and Theoretical Consideration. Separation Science and Technology, 2011, 46, 1213-1223.	2.5	78

#	Article	IF	CITATIONS
37	Simultaneous ultrasound-assisted removal of sunset yellow and erythrosine by ZnS:Ni nanoparticles loaded on activated carbon: Optimization by central composite design. Ultrasonics Sonochemistry, 2014, 21, 1441-1450.	8.2	77
38	Cu2O photocatalyst modified antifouling polysulfone mixed matrix membrane for ultrafiltration of protein and visible light driven photocatalytic pharmaceutical removal. Separation and Purification Technology, 2019, 212, 191-204.	7.9	77
39	Performance of TX-100 and TX-114 for the separation of chrysoidine dye using cloud point extraction. Journal of Hazardous Materials, 2006, 137, 827-835.	12.4	75
40	Integrated ozonation assisted electrocoagulation process for the removal of cyanide from steel industry wastewater. Chemosphere, 2021, 263, 128370.	8.2	74
41	Preparation and characterization of novel green synthesized iron–aluminum nanocomposite and studying its efficiency in fluoride removal. Chemosphere, 2019, 235, 391-402.	8.2	73
42	Potential and sustainable utilization of tea waste: A review on present status and future trends. Journal of Environmental Chemical Engineering, 2021, 9, 106179.	6.7	73
43	Treatment of Oily Waste Water Using Low-Cost Ceramic Membrane: Flux Decline Mechanism and Economic Feasibility. Separation Science and Technology, 2009, 44, 2840-2869.	2.5	72
44	Kinetic and Equilibrium Study for the Fluoride Adsorption using Pyrophyllite. Separation Science and Technology, 2011, 46, 1797-1807.	2.5	72
45	Effect of process parameters on electroless plating and nickel-ceramic composite membrane characteristics. Desalination, 2011, 268, 195-203.	8.2	71
46	Technological advancement in the synthesis and applications of lignin-based nanoparticles derived from agro-industrial waste residues: A review. International Journal of Biological Macromolecules, 2020, 163, 1828-1843.	7.5	71
47	Micellar enhanced ultrafiltration of eosin dye using hexadecyl pyridinium chloride. Journal of Hazardous Materials, 2006, 136, 972-977.	12.4	67
48	Fe3O4 promoted metal organic framework MIL-100(Fe) for the controlled release of doxorubicin hydrochloride. Microporous and Mesoporous Materials, 2018, 259, 203-210.	4.4	64
49	A critical review on the techniques used for the synthesis and applications of crystalline cellulose derived from agricultural wastes and forest residues. Carbohydrate Polymers, 2021, 273, 118537.	10.2	64
50	SEM analysis and gas permeability test to characterize polysulfone membrane prepared with polyethylene glycol as additive. Journal of Colloid and Interface Science, 2008, 320, 245-253.	9.4	63
51	Micellar enhanced ultrafiltration of phenolic derivatives from their mixtures. Journal of Colloid and Interface Science, 2005, 285, 395-402.	9.4	61
52	Adsorption Behavior of Chrysoidine Dye on Activated Charcoal and Its Regeneration Characteristics by Using Different Surfactants. Separation Science and Technology, 2005, 39, 2419-2440.	2.5	58
53	Green synthesized iron nanoparticles supported on pH responsive polymeric membrane for nitrobenzene reduction and fluoride rejection study: Optimization approach. Journal of Cleaner Production, 2018, 170, 1111-1123.	9.3	57
54	Recent Developments in Nanomaterials-Modified Membranes for Improved Membrane Distillation Performance. Membranes, 2020, 10, 140.	3.0	55

#	Article	IF	CITATIONS
55	Progress in the electrochemical reduction of CO2 to formic acid: A review on current trends and future prospects. Journal of Environmental Chemical Engineering, 2021, 9, 106394.	6.7	53
56	Utilization of waste polyvinyl chloride (PVC) for ultrafiltration membrane fabrication and its characterization. Journal of Environmental Chemical Engineering, 2020, 8, 103650.	6.7	48
57	Stimuli responsive mixed matrix polysulfone ultrafiltration membrane for humic acid and photocatalytic dye removal applications. Separation and Purification Technology, 2020, 250, 117247.	7.9	48
58	Introduction to Membranes. Interface Science and Technology, 2018, 25, 1-37.	3.3	45
59	House hold unit for the treatment of fluoride, iron, arsenic and microorganism contaminated drinking water. Chemosphere, 2018, 199, 728-736.	8.2	39
60	Electrochemical Studies for CO ₂ Reduction Using Synthesized Co ₃ O ₄ (Anode) and Cu ₂ O (Cathode) as Electrocatalysts. Energy & Electrocatalysts.	5.1	37
61	Preparation and characterization of animal bone powder impregnated fly ash catalyst for transesterification. Science of the Total Environment, 2019, 669, 314-321.	8.0	37
62	Preparation of a novel thermo responsive PSF membrane, with cross linked PVCL-co-PSF copolymer for protein separation and easy cleaning. RSC Advances, 2015, 5, 22609-22619.	3.6	36
63	Fabrication of ultrasound-mediated tunable graphene oxide nanoscrolls. Ultrasonics Sonochemistry, 2020, 63, 104976.	8.2	36
64	Ultrasonic assisted removal of sunset yellow from aqueous solution by zinc hydroxide nanoparticle loaded activated carbon: Optimized experimental design. Materials Science and Engineering C, 2015, 52, 82-89.	7.3	34
65	Ultrasound assisted extraction of gallic acid from Ficus auriculata leaves using green solvent. Food and Bioproducts Processing, 2021, 128, 1-11.	3.6	33
66	Electrochemical reduction of CO ₂ to HCOOH using zinc and cobalt oxide as electrocatalysts. New Journal of Chemistry, 2015, 39, 7348-7354.	2.8	32
67	Advances in Dye Removal Technologies. Green Chemistry and Sustainable Technology, 2018, , .	0.7	32
68	Microfiltration of oil–water emulsions using low cost ceramic membranes prepared with the uniaxial dry compaction method. Ceramics International, 2014, 40, 1155-1164.	4.8	31
69	Oxidative desulfurization: Kinetic modelling. Journal of Hazardous Materials, 2009, 161, 1360-1368.	12.4	30
70	Manufacture of Nickel-Ceramic Composite Membranes in Agitated Electroless Plating Baths. Materials and Manufacturing Processes, 2011, 26, 862-867.	4.7	30
71	Synthesis of Pb ₂ O electrocatalyst and its application in the electrochemical reduction of CO ₂ to HCOOH in various electrolytes. RSC Advances, 2015, 5, 40414-40421.	3.6	30
72	Ultrasonic assisted dispersive solid-phase microextraction of Eriochrome Cyanine R from water sample on ultrasonically synthesized lead (II) dioxide nanoparticles loaded on activated carbon: Experimental design methodology. Ultrasonics Sonochemistry, 2017, 34, 317-324.	8.2	29

#	Article	IF	CITATIONS
73	Effect of Polyethylene glycol methyl ether blend Humic acid on poly (vinylidene) Tj ETQq1 1 0.784314 rgBT /Ov	erlock 10 T 4.8	f 50 747 Td(28
	with optimization approach. Polymer Testing, 2017, 61, 162-176.		
74	Evaluation of mPEG effect on the hydrophilicity and antifouling nature of the PVDF-co-HFP flat sheet polymeric membranes for humic acid removal. Journal of Water Process Engineering, 2016, 14, 9-18.	5.6	27
7 5	Hybrid electrocoagulation–microfiltration technique for treatment of nanofiltration rejected steel industry effluent. International Journal of Environmental Analytical Chemistry, 2022, 102, 62-83.	3.3	26
76	Experimental evaluation of Pt/TiO2/rGO as an efficient HER catalyst via artificial photosynthesis under UVB & UVB amp; visible irradiation. International Journal of Hydrogen Energy, 2020, 45, 17174-17190.	7.1	26
77	Selective glucose permeability in presence of various salts through tunable pore size of pH responsive PVDF-co-HFP membrane. Separation and Purification Technology, 2019, 221, 249-260.	7.9	25
78	Role of poly(2â€acrylamidoâ€2â€methylâ€1â€propanesulfonic acid) in the modification of polysulfone membranes for ultrafiltration. Journal of Applied Polymer Science, 2017, 134, 45290.	2.6	24
79	Preparation and Characterizations of Ceramic Microfiltration Membrane: Effect of Inorganic Precursors on Membrane Morphology. Separation Science and Technology, 2010, 46, 33-45.	2.5	23
80	Combinatorial performance characteristics of agitated nickel hypophosphite electroless plating baths. Journal of Materials Processing Technology, 2011, 211, 1488-1499.	6.3	22
81	Thermochemical pretreatment enhanced bioconversion of elephant grass (Pennisetum purpureum): insight on the production of sugars and lignin. Biomass Conversion and Biorefinery, 2022, 12, 1125-1138.	4.6	22
82	Artificial Neural Network (ANN) Method for Modeling of Sunset Yellow Dye Adsorption Using Nickel Sulfide Nanoparticle Loaded on Activated Carbon: Kinetic and Isotherm Study. Journal of Dispersion Science and Technology, 2015, 36, 1339-1348.	2.4	21
83	Biopolymer (gum arabic) incorporation in waste polyvinylchloride membrane for the enhancement of hydrophilicity and natural organic matter removal in water. Journal of Water Process Engineering, 2020, 38, 101569.	5.6	21
84	Environmental remediation by tea waste and its derivative products: A review on present status and technological advancements. Chemosphere, 2022, 300, 134480.	8.2	20
85	Adsorption of naphthalene onto high-surface-area nanoparticle loaded activated carbon by high performance liquid chromatography: response surface methodology, isotherm and kinetic study. RSC Advances, 2016, 6, 54322-54330.	3.6	19
86	Use of CSâ€"PAA nanoparticles as an alternative to metal oxide nanoparticles and their effect on fouling mitigation of a PSF ultrafiltration membrane. RSC Advances, 2015, 5, 66109-66121.	3.6	18
87	Electrochemical reduction of CO ₂ to HCOOH on a synthesized Sn electrocatalyst using a Co ₃ O ₄ anode. RSC Advances, 2015, 5, 68551-68557.	3.6	18
88	Preparation and characterization of hydrotalcite-like materials from flyash for transesterification. Clean Technologies and Environmental Policy, 2016, 18, 529-540.	4.1	18
89	Preparation of hydrophilic polysulfone membrane using polyacrylic acid with polyvinyl pyrrolidone. Journal of Applied Polymer Science, $2015, 132, .$	2.6	17
90	Utilization of LD slag from steel industry for the preparation of MF membrane. Journal of Environmental Management, 2020, 259, 110060.	7.8	17

#	Article	IF	CITATIONS
91	Sugarcane bagasse into value-added products: a review. Environmental Science and Pollution Research, 2022, 29, 62785-62806.	5.3	17
92	Treatment of Leather Plant Effluent by Membrane Separation Processes. Separation Science and Technology, 2006, 41, 3329-3348.	2.5	16
93	Effect of Ultrasound on the Performance of Nickel Hydrazine Electroless Plating Baths. Materials and Manufacturing Processes, 2012, 27, 201-206.	4.7	16
94	Purification of catechins from Camellia sinensis using membrane cell. Food and Bioproducts Processing, 2019, 117, 203-212.	3.6	16
95	Simultaneous CO ₂ Reduction and Dye (Crystal Violet) Removal Electrochemically on Sn and Zn Electrocatalysts Using Co ₃ O ₄ Anode. Energy & Energ	5.1	15
96	Green synthesized iron nanoparticle-embedded pH-responsive PVDF-co-HFP membranes: Optimization study for NPs preparation and nitrobenzene reduction. Separation Science and Technology, 2017, 52, 2338-2355.	2.5	14
97	Performance characteristics of hydrothermal and sonication assisted electroless plating baths for nickel–ceramic composite membrane fabrication. Desalination, 2012, 284, 77-85.	8.2	12
98	pH-Responsive Membranes. Interface Science and Technology, 2018, , 39-66.	3.3	12
99	Doxorubicin Loading Capacity of MIL-100(Fe): Effect of Synthesis Conditions. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 2366-2375.	3.7	12
100	Photoresponsive Membranes. Interface Science and Technology, 2018, , 115-144.	3.3	11
101	Microfiltration Membranes. , 2019, , 111-146.		11
102	Synthesis of Carbon Nanotubes from Industrial Wastes Following Alkali Activation and Film Casting Method. Waste and Biomass Valorization, 2020, 11 , 4957-4966.	3.4	11
103	Recovery of H2SO4 from wastewater in the presence of NaCl and KHCO3 through pH responsive polysulfone membrane: Optimization approach. Polymer Testing, 2020, 86, 106463.	4.8	11
104	Promising integrated technique for the treatment of highly saline nanofiltration rejected stream of steel industry. Journal of Environmental Management, 2021, 300, 113781.	7.8	11
105	Loading and release of doxorubicin hydrochloride from iron(<scp>iii</scp>) trimesate MOF and zinc oxide nanoparticle composites. Dalton Transactions, 2020, 49, 8755-8763.	3.3	10
106	Simultaneous Separation of Two Oxyanions from Their Mixture Using Micellar Enhanced Ultrafiltration. Separation Science and Technology, 2005, 40, 1439-1460.	2.5	9
107	Nickel-ceramic composite membranes: Optimization of hydrazine based electroless plating process parameters. Desalination, 2011, 275, 243-251.	8.2	9
108	Polymeric ultrafiltration membranes modified with fly ash based carbon nanotubes for thermal stability and protein separation. Case Studies in Chemical and Environmental Engineering, 2021, 4, 100155.	6.1	9

#	Article	IF	Citations
109	Cloud Point Extraction of Nitrobenzene using TX-100. Separation Science and Technology, 2011, 46, 744-753.	2.5	8
110	Surface engineering characteristics of ultrasound assisted hypophosphite electroless plating baths. Surface Engineering, 2013, 29, 489-494.	2.2	8
111	Concurrent electrochemical CO ₂ reduction to HCOOH and methylene blue removal on metal electrodes. RSC Advances, 2016, 6, 40916-40922.	3.6	8
112	Adsorption of Dyes. Green Chemistry and Sustainable Technology, 2018, , 49-98.	0.7	8
113	Biologically Responsive Membranes. Interface Science and Technology, 2018, 25, 145-171.	3.3	8
114	Magnetic-Responsive Membranes. Interface Science and Technology, 2018, , 193-219.	3.3	8
115	Microfiltration of stable oil-in-water emulsions using kaolinbased ceramic membrane and evaluation of fouling mechanism. Desalination and Water Treatment, 2010, 22, 133-145.	1.0	7
116	Evaluation of Surfactants for the Cost Effective Enhanced Oil Recovery of Assam Crude Oil Fields. Petroleum Science and Technology, 2013, 31, 755-762.	1.5	7
117	Electric Field-Responsive Membranes. Interface Science and Technology, 2018, , 173-191.	3.3	7
118	CeO2 nanoparticles incorporated MIL-100(Fe) composites for loading of an anticancer drug: Effects of HF in composite synthesis and drug loading capacity. Inorganica Chimica Acta, 2022, 533, 120784.	2.4	7
119	Temperature-Responsive Membranes. Interface Science and Technology, 2018, 25, 67-113.	3.3	6
120	Membrane adsorption. Interface Science and Technology, 2021, 33, 629-653.	3.3	6
121	Emulsion Liquid Membrane. Green Chemistry and Sustainable Technology, 2018, , 313-323.	0.7	5
122	Ultrasoundâ€assisted dispersive microâ€solidâ€phase extraction using hydrophobic thiolated ionic liquids immobilized on gold nanoparticles for the preconcentration and determination of amino acids in human plasma samples. Separation Science Plus, 2018, 1, 419-429.	0.6	5
123	Treatment of Colored Effluent using Surfactant Modified Bamboo Leaves Powder. Separation Science and Technology, 2014, 49, 221-231.	2.5	4
124	Metal removal efficiency of novel LD-slag-incorporated ceramic membrane from steel plant wastewater. International Journal of Environmental Analytical Chemistry, 2022, 102, 1078-1094.	3.3	4
125	Precipitation of cetyl (hexadecyl) pyridineum chloride using mono and divalent oxyanions. Journal of Hazardous Materials, 2008, 160, 502-507.	12.4	3
126	Ultrasound-Responsive Membranes. Interface Science and Technology, 2018, 25, 221-237.	3.3	2

#	Article	IF	Citations
127	Formation and detoxification of inhibitors. , 2021, , 61-78.		2
128	Value-added products derived from lignocellulosic biomass., 2021,, 125-140.		2
129	Uses of Ceramic Membrane-Based Technology for the Clarification of Mosambi, Pineapple and Orange Juice. Materials Horizons, 2019, , 459-483.	0.6	2
130	Pervaporation., 2020,, 99-120.		1
131	Membrane contactors., 2020, , 143-162.		1
132	Applications of thermal induced membrane separation processes. , 2020, , 251-267.		1
133	Analytical methods for the quantification of sugars and characterization of biomass. , 2021, , 111-124.		1
134	Racemic and enantiomeric effect of tartaric acid on the hydrophilicity of polysulfone membrane. Membrane Water Treatment, 2016, 7, 257-275.	0.5	1
135	Hybrid Treatment Method of Industrial Effluent. Green Chemistry and Sustainable Technology, 2018, , 199-225.	0.7	1
136	Progress in the synthesis and applications of polymeric nanomaterials derived from waste lignocellulosic biomass., 2022,, 419-433.		1
137	Green Synthesized Carbon and Metallic Nanomaterials for Biofuel Production: Effect of Operating Parameters. Clean Energy Production Technologies, 2022, , 105-126.	0.5	1
138	Prediction of flux decline during membrane filtration of leather plant effluent. International Journal of Environment and Waste Management, 2012, 9, 123.	0.3	0
139	Kinetic and isotherm study of Sudan black B removal. Toxicology and Industrial Health, 2016, 32, 1891-1901.	1.4	0
140	Electrocoagulation. Green Chemistry and Sustainable Technology, 2018, , 289-312.	0.7	0
141	Thermal induced membrane separation processes: an introduction. , 2020, , 1-16.		0
142	Membrane materials and modification for thermal induced membrane separation processes. , 2020, , 41-53.		0
143	Fabrication and characterization techniques for thermal induced membrane separation processes. , 2020, , 55-76.		0
144	Membrane distillation., 2020, , 77-97.		0

#	Article	IF	Citations
145	Theoretical aspects, design, and modeling in thermal induced membrane separation processes. , 2020, , 17-39.		О
146	Membrane crystallization., 2020,, 121-142.		0
147	Membrane reactors and their applications in thermal induced membrane separation processes. , 2020, , 163-186.		O
148	Novel smart, super-hydrophobic, and next generation membranes for thermal induced membrane separation processes., 2020, , 187-202.		0
149	Membrane processes in integrated systems. , 2020, , 203-227.		O
150	Fouling and its mitigation in thermal induced membrane separation processes., 2020,, 229-249.		0
151	Advancements in thermal induced membrane separation processes. , 2020, , 269-295.		О
152	Bio-based Polymeric Nanocomposites for Stimuli-Responsive Membranes. , 2021, , 1-28.		0
153	Bio-based Polymeric Nanocomposites for Stimuli-Responsive Membranes. , 2021, , 781-808.		0
154	Enzymatic hydrolysis of lignocellulosic biomass: Mechanistic insight and advancement., 2021,, 79-94.		0
155	Conventional pretreatment methods of lignocellulosic biomass. , 2021, , 31-46.		O
156	Compositional aspects of lignocellulosic biomass. , 2021, , 17-30.		0
157	Introduction to lignocellulosic biomass and its potential. , 2021, , 1-15.		O
158	Strategies to improve enzymatic production of sugars. , 2021, , 95-109.		0
159	Bioenergy from biomass. , 2021, , 153-166.		O
160	Emerging and advanced techniques in the pretreatment of lignocellulosic biomass., 2021,, 47-60.		0
161	Micellar-Enhanced Ultrafiltration (MEUF). Green Chemistry and Sustainable Technology, 2018, , 227-256.	0.7	0
162	Nanofiltration of Dyes. Green Chemistry and Sustainable Technology, 2018, , 153-197.	0.7	0

#	Article	IF	CITATIONS
163	Cloud Point Extraction. Green Chemistry and Sustainable Technology, 2018, , 257-288.	0.7	O
164	Improving the Hydrophilicity of Polysulfone Membrane by the Addition of Imidazol with Polyvinyl Pyrrolidone for Crystal Violet Dye Removal., 2019,, 395-407.		0
165	Treatment of Coal Industry Effluents. , 2019, , 241-256.		0
166	Potential of MOF-based novel adsorbents for the removal of aquatic pollutants., 2022,, 29-47.		0