
Yelena V Parfyonova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2859273/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adipose-Derived Stem Cells Stimulate Regeneration of Peripheral Nerves: BDNF Secreted by These Cells Promotes Nerve Healing and Axon Growth De Novo. PLoS ONE, 2011, 6, e17899.	1.1	248
2	Adipose Stromal Cells Stimulate Angiogenesis via Promoting Progenitor Cell Differentiation, Secretion of Angiogenic Factors, and Enhancing Vessel Maturation. Tissue Engineering - Part A, 2009, 15, 2039-2050.	1.6	184
3	Adipose-Derived Mesenchymal Stromal Cells From Aged Patients With Coronary Artery Disease Keep Mesenchymal Stromal Cell Properties but Exhibit Characteristics of Aging and Have Impaired Angiogenic Potential. Stem Cells Translational Medicine, 2014, 3, 32-41.	1.6	104
4	Diabetes mellitus, cachexia and obesity in heart failure: rationale and design of the Studies Investigating Coâ€morbidities Aggravating Heart Failure (SICAâ€HF). Journal of Cachexia, Sarcopenia and Muscle, 2010, 1, 187-194.	2.9	75
5	Disturbed angiogenic activity of adipose-derived stromal cells obtained from patients with coronary artery disease and diabetes mellitus type 2. Journal of Translational Medicine, 2014, 12, 337.	1.8	73
6	Urokinase Plasminogen Activator Stimulates Vascular Smooth Muscle Cell Proliferation Via Redox-Dependent Pathways. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 801-807.	1.1	72
7	Expression of adhesion molecule T-cadherin is increased during neointima formation in experimental restenosis. Histochemistry and Cell Biology, 2002, 118, 281-290.	0.8	69
8	Baculovirus-transduced, VEGF-expressing adipose-derived stem cell sheet for the treatment of myocardium infarction. Biomaterials, 2014, 35, 174-184.	5.7	67
9	Autologous Stem Cell Therapy: How Aging and Chronic Diseases Affect Stem and Progenitor Cells. BioResearch Open Access, 2015, 4, 26-38.	2.6	66
10	Nuclear translocation of urokinase-type plasminogen activator. Blood, 2008, 112, 100-110.	0.6	63
11	Urokinase-type Plasminogen Activator (uPA) Promotes Angiogenesis by Attenuating Proline-rich Homeodomain Protein (PRH) Transcription Factor Activity and De-repressing Vascular Endothelial Growth Factor (VEGF) Receptor Expression. Journal of Biological Chemistry, 2016, 291, 15029-15045.	1.6	58
12	Transplantation of modified human adipose derived stromal cells expressing VEGF165 results in more efficient angiogenic response in ischemic skeletal muscle. Journal of Translational Medicine, 2013, 11, 138.	1.8	57
13	T-cadherin suppresses angiogenesis in vivo by inhibiting migration of endothelial cells. Angiogenesis, 2007, 10, 183-195.	3.7	55
14	Urokinase Gene Transfer Augments Angiogenesis in Ischemic Skeletal and Myocardial Muscle. Molecular Therapy, 2007, 15, 1939-1946.	3.7	53
15	Regulation of arterial remodeling and angiogenesis by urokinase-type plasminogen activatorThis article is one of a selection of papers from the NATO Advanced Research Workshop on Translational Knowledge for Heart Health (published in part 2 of a 2-part Special Issue) Canadian Journal of Physiology and Pharmacology. 2009. 87. 231-251.	0.7	52
16	Regulation of Adipose Tissue Stem Cells Angiogenic Potential by Tumor Necrosis Factorâ€Alpha. Journal of Cellular Biochemistry, 2016, 117, 180-196.	1.2	52
17	Latent Inflammation and Insulin Resistance in Adipose Tissue. International Journal of Endocrinology, 2017, 2017, 1-12.	0.6	49
18	Plasminogen activators in vascular remodeling and angiogenesis. Biochemistry (Moscow), 2002, 67, 119-134.	0.7	46

YELENA V PARFYONOVA

#	Article	IF	CITATIONS
19	Urokinase plasminogen activator augments cell proliferation and neointima formation in injured arteries via proteolytic mechanisms. Atherosclerosis, 2001, 159, 297-306.	0.4	44
20	CRISPR-based Activation of Endogenous Neurotrophic Genes in Adipose Stem Cell Sheets to Stimulate Peripheral Nerve Regeneration. Theranostics, 2019, 9, 6099-6111.	4.6	44
21	Combined Transfer of Human VEGF165 and HGF Genes Renders Potent Angiogenic Effect in Ischemic Skeletal Muscle. PLoS ONE, 2012, 7, e38776.	1.1	43
22	Adipose-derived stem cell sheets functionalized by hybrid baculovirus for prolonged GDNF expression and improved nerve regeneration. Biomaterials, 2017, 140, 189-200.	5.7	43
23	Enhanced angiogenesis in ischemic skeletal muscle after transplantation of cell sheets from baculovirus-transduced adipose-derived stromal cells expressing VEGF165. Stem Cell Research and Therapy, 2015, 6, 204.	2.4	42
24	C-Kit Cardiac Progenitor Cell Based Cell Sheet Improves Vascularization and Attenuates Cardiac Remodeling following Myocardial Infarction in Rats. BioMed Research International, 2018, 2018, 1-13.	0.9	41
25	Urokinase plasminogen activator enhances neointima growth and reduces lumen size in injured carotid arteries. Journal of Hypertension, 2000, 18, 1065-1069.	0.3	36
26	Increased expression of uPA, uPAR, and PAI-1 in psoriatic skin and in basal cell carcinomas. Archives of Dermatological Research, 2017, 309, 433-442.	1.1	34
27	In Vitro Neuronal Induction of Adipose-Derived Stem Cells and their Fate after Transplantation into Injured Mouse Brain. Current Medicinal Chemistry, 2012, 19, 5170-5177.	1.2	32
28	Angiogenic and pleiotropic effects of VEGF165 and HGF combined gene therapy in a rat model of myocardial infarction. PLoS ONE, 2018, 13, e0197566.	1.1	32
29	Contrasting Effects of Urokinase and Tissue-Type Plasminogen Activators on Neointima Formation and Vessel Remodelling after Arterial Injury. Journal of Vascular Research, 2004, 41, 268-276.	0.6	30
30	Polyelectrolyte Nanoparticles Mediate Vascular Gene Delivery. Pharmaceutical Research, 2004, 21, 1656-1661.	1.7	30
31	Transplantation of Adipose Stromal Cell Sheet Producing Hepatocyte Growth Factor Induces Pleiotropic Effect in Ischemic Skeletal Muscle. International Journal of Molecular Sciences, 2019, 20, 3088.	1.8	27
32	Fibulin-5 binds urokinase-type plasminogen activator and mediates urokinase-stimulated β1-integrin-dependent cell migration. Biochemical Journal, 2012, 443, 491-503.	1.7	25
33	Endothelial and smooth muscle cells derived from human cardiac explants demonstrate angiogenic potential and suitable for design of cell-containing vascular grafts. Journal of Translational Medicine, 2017, 15, 54.	1.8	25
34	Plasminogen Activator Expression Correlates with Genetic Differences in Vascular Remodeling. Journal of Vascular Research, 2004, 41, 481-490.	0.6	22
35	Urokinase Induces Matrix Metalloproteinase-9/Gelatinase B Expression in THP-1 Monocytes via ERK1/2 and Cytosolic Phospholipase A ₂ Activation and Eicosanoid Production. Journal of Vascular Research, 2006, 43, 482-490.	0.6	21
36	Urokinase Plasminogen Activator in Injured Adventitia Increases the Number of Myofibroblasts and Augments Early Proliferation. Journal of Vascular Research, 2006, 43, 437-446.	0.6	20

#	Article	IF	CITATIONS
37	Molecular mechanisms of latent inflammation in metabolic syndrome. Possible role of sirtuins and peroxisome proliferator-activated receptor type Î ³ . Biochemistry (Moscow), 2015, 80, 1217-1226.	0.7	18
38	Oligonucleotide Microarrays Reveal Regulated Genes Related to Inward Arterial Remodeling Induced by Urokinase Plasminogen Activator. Journal of Vascular Research, 2009, 46, 177-187.	0.6	17
39	Comparison of cardiac stem cell sheets detached by Versene solution and from thermoresponsive dishes reveals similar properties of constructs. Tissue and Cell, 2017, 49, 64-71.	1.0	17
40	Association of platelet function in hypertensive patients with left ventricular hypertrophy, transient myocardial ischemia, and coronary artery disease. Platelets, 1998, 9, 191-195.	1.1	16
41	Autophagy, Mesenchymal Stem Cell Differentiation, and Secretion. Biomedicines, 2021, 9, 1178.	1.4	14
42	Urokinase-type plasminogen activator (uPA) is critical for progression of tuberous sclerosis complex 2 (TSC2)-deficient tumors. Journal of Biological Chemistry, 2017, 292, 20528-20543.	1.6	13
43	Cell Sheet Comprised of Mesenchymal Stromal Cells Overexpressing Stem Cell Factor Promotes Epicardium Activation and Heart Function Improvement in a Rat Model of Myocardium Infarction. International Journal of Molecular Sciences, 2020, 21, 9603.	1.8	12
44	UROKINASE PLASMINOGEN ACTIVATOR SYSTEM IN HUMANS WITH STABLE CORONARY ARTERY DISEASE. Clinical and Experimental Pharmacology and Physiology, 1999, 26, 354-357.	0.9	10
45	T-cadherin activates Rac1 and Cdc42 and changes endothelial permeability. Biochemistry (Moscow), 2009, 74, 362-370.	0.7	10
46	Interleukin-4 Restores Insulin Sensitivity in Lipid-Induced Insulin-Resistant Adipocytes. Biochemistry (Moscow), 2018, 83, 498-506.	0.7	10
47	Alpha-fetoprotein contributes to THP-1 cell invasion and chemotaxis via protein kinase and Gi-protein-dependent pathways. Molecular and Cellular Biochemistry, 2013, 379, 283-293.	1.4	9
48	Decreased UCP-1 expression in beige adipocytes from adipose-derived stem cells of type 2 diabetes patients associates with mitochondrial ROS accumulation during obesity. Diabetes Research and Clinical Practice, 2020, 169, 108410.	1.1	9
49	T-cadherin GPI-anchor is insufficient for apical targeting in MDCK cells. Biochemical and Biophysical Research Communications, 2005, 329, 624-631.	1.0	8
50	Mesenchymal stromal cells enhance self-assembly of a HUVEC tubular network through uPA-uPAR/VEGFR2/integrin/NOTCH crosstalk. Biochimica Et Biophysica Acta - Molecular Cell Research, 2022, 1869, 119157.	1.9	8
51	Low AS160 and high SGK basal phosphorylation associates with impaired incretin profile and type 2 diabetes in adipose tissue of obese patients. Diabetes Research and Clinical Practice, 2019, 158, 107928.	1.1	7
52	Therapeutic Angiogenesis by a "Dynamic Duo― Simultaneous Expression of HGF and VEGF165 by Novel Bicistronic Plasmid Restores Blood Flow in Ischemic Skeletal Muscle. Pharmaceutics, 2020, 12, 1231.	2.0	7
53	Transduction of rat and human adipose-tissue derived mesenchymal stromal cells by adeno-associated viral vector serotype DJ. Biology Open, 2021, 10, .	0.6	7
54	Interaction between kringle and growth-factor-like domains in the urokinase molecule: Possible role in stimulation of chemotaxis. Biochemistry (Moscow), 2008, 73, 252-260.	0.7	6

YELENA V PARFYONOVA

#	Article	IF	CITATIONS
55	Gene therapy of type 2 diabetes mellitus: state of art. Terapevticheskii Arkhiv, 2019, 91, 149-152.	0.2	6
56	The role of urokinase in vascular cell migration and in regulation of growth and branching of capillaries. Cell and Tissue Biology, 2016, 10, 37-46.	0.2	5
57	Bi-directional gene activation and repression promote ASC differentiation and enhance bone healing in osteoporotic rats. Molecular Therapy, 2022, 30, 92-104.	3.7	5
58	Analysis of MicroRNA Profile Alterations in Extracellular Vesicles From Mesenchymal Stromal Cells Overexpressing Stem Cell Factor. Frontiers in Cell and Developmental Biology, 2021, 9, 754025.	1.8	4
59	Type 2 Diabetes Mellitus Facilitates Shift of Adipose-Derived Stem Cells Ex Vivo Differentiation toward Osteogenesis among Patients with Obesity. Life, 2022, 12, 688.	1.1	4
60	Plasma urokinase antigen and C-reactive protein predict angina recurrence after coronary angioplasty. Heart and Vessels, 2014, 29, 611-618.	0.5	2
61	Oligonucleotide Microarrays Identified Potential Regulatory Genes Related to Early Outward Arterial Remodeling Induced by Tissue Plasminogen Activator. Frontiers in Physiology, 2019, 10, 493.	1.3	2
62	The Effects of Glucagon-Like Peptide Type 1 (GLP-1) and its Analogues in Adipose Tissue: Is there a way to Thermogenesis?. Current Molecular Medicine, 2021, 21, 527-538.	0.6	2
63	UK–Russia Researcher Links Workshop: extracellular vesicles – mechanisms of biogenesis and roles in disease pathogenesis, M.V. Lomonosov Moscow State University, Moscow, Russia, 1–5ÂMarch 2015. Journal of Extracellular Vesicles, 2015, 4, 28094.	5.5	1
64	587. MiRNA-92a Is Involved in the Regulation of Adipose-Derived Stromal Cell (ADSC) Angiogenic Properties. Molecular Therapy, 2015, 23, S233-S234.	3.7	1
65	447. Notch Activation Enchances Vascular Lineage Commitment of Cardiac Stem Cells. Molecular Therapy, 2016, 24, S177-S178.	3.7	1
66	448. Therapeutic Angiogenesis by Subcutaneous Cell Sheet Delivery Is Superior to Cell Injection: A Study of ADSC Efficacy in a Model of Hind Limb Ischemia. Molecular Therapy, 2016, 24, S178.	3.7	1
67	Heart stem cells: fact or fantasy?. Russian Journal of Cardiology, 2019, , 84-90.	0.4	1
68	657. Delivery of Genetically Engineered Adipose-Derived Cell Sheets for Treatment of Ischemic Disorders – Development of Application in Animal Models. Molecular Therapy, 2015, 23, S262.	3.7	0
69	NDRG1 Activity in Fat Depots Is Associated With Type 2 Diabetes and Impaired Incretin Profile in Patients With Morbid Obesity. Frontiers in Endocrinology, 2021, 12, 777589.	1.5	0