List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2858934/publications.pdf Version: 2024-02-01

HONG FANC

#	Article	IF	CITATIONS
1	Metallo-boranes: a class of unconventional superhalogens defying electron counting rules. Nanoscale, 2022, 14, 1767-1778.	2.8	3
2	SbCl ₄ : An Exceptional Superhalogen as the Building Block of a Mixed Valence Supercrystal with Unconventional Ferroelectricity. Journal of Physical Chemistry Letters, 2022, 13, 1049-1056.	2.1	6
3	Superatomic chemistry. Journal of the Indian Chemical Society, 2022, 99, 100350.	1.3	2
4	Halogen-Free Electrolytes Based on Modified Boranes for Alkali-Ion Batteries. Journal of Physical Chemistry C, 2022, 126, 5112-5121.	1.5	2
5	Atomically Precise Core-Tailored Metal Chalcogenide Nanoclusters: Tuning the Electronic Structure and Magnetic Properties. Journal of Physical Chemistry C, 2022, 126, 6512-6522.	1.5	3
6	Interfacial triferroicity in monolayer chromium dihalide. Physical Review B, 2022, 105, .	1.1	5
7	Review of modification strategies in emerging inorganic solid-state electrolytes for lithium, sodium, and potassium batteries. Joule, 2022, 6, 543-587.	11.7	90
8	Argyrodite-type advanced lithium conductors and transport mechanisms beyond paddle-wheel effect. Nature Communications, 2022, 13, 2078.	5.8	27
9	Halide sublattice dynamics drive Li-ion transport in antiperovskites. Journal of Materials Chemistry A, 2022, 10, 15731-15742.	5.2	3
10	Designing New Metal Chalcogenide Nanoclusters through Atomâ€byâ€Atom Substitution. Small, 2021, 17, e2002927.	5.2	7
11	Two-dimensional metal-free boron chalcogenides B ₂ X ₃ (X = Se and Te) as photocatalysts for water splitting under visible light. Nanoscale, 2021, 13, 3627-3632.	2.8	9
12	Imidazole-graphyne: a new 2D carbon nitride with a direct bandgap and strong IR refraction. Physical Chemistry Chemical Physics, 2021, 23, 10274-10280.	1.3	4
13	A family of ionic supersalts with covalent-like directionality and unconventional multiferroicity. Nature Communications, 2021, 12, 1331.	5.8	19
14	Built-in electric field control of magnetic coupling in van der Waals semiconductors. Physical Review B, 2021, 103, .	1.1	19
15	Role of Size and Composition on the Design of Superalkalis. Journal of Physical Chemistry A, 2021, 125, 5886-5894.	1.1	5
16	Binding of noble gas atoms by superhalogens. Journal of Chemical Physics, 2021, 155, 014304.	1.2	5
17	Antiperovskite K ₃ 0I for K-Ion Solid State Electrolyte. Journal of Physical Chemistry Letters, 2021, 12, 7120-7126.	2.1	33
18	Theory-Guided Discovery of Novel Materials. Journal of Physical Chemistry Letters, 2021, 12, 6499-6513.	2.1	11

#	Article	IF	CITATIONS
19	Heavily Tungstenâ€Doped Sodium Thioantimonate Solidâ€State Electrolytes with Exceptionally Low Activation Energy for Ionic Diffusion. Angewandte Chemie, 2021, 133, 26362-26370.	1.6	2
20	Heavily Tungstenâ€Doped Sodium Thioantimonate Solidâ€State Electrolytes with Exceptionally Low Activation Energy for Ionic Diffusion. Angewandte Chemie - International Edition, 2021, 60, 26158-26166.	7.2	18
21	Super-electrophiles of tri- and tetra-anions stabilized by selected terminal groups and their role in binding noble gas atoms. Physical Chemistry Chemical Physics, 2021, 23, 21496-21500.	1.3	5
22	Realization of the Zn ³⁺ oxidation state. Nanoscale, 2021, 13, 14041-14048.	2.8	13
23	Boron-Functionalized Organic Framework as a High-Performance Metal-Free Catalyst for N ₂ Fixation. Journal of Physical Chemistry Letters, 2021, 12, 12142-12149.	2.1	9
24	Assembling Si ₂ BN nanoribbons into a 3D porous structure as a universal anode material for both Li- and Na-ion batteries with high performance. Nanoscale, 2020, 12, 19367-19374.	2.8	25
25	Robustness of Superatoms and Their Potential as Building Blocks of Materials: Al ₁₃ [–] vs B(CN) ₄ [–] . Journal of Physical Chemistry C, 2020, 124, 6435-6440.	1.5	7
26	Electrical Control of Magnetic Phase Transition in a Type-I Multiferroic Double-Metal Trihalide Monolayer. Physical Review Letters, 2020, 124, 067602.	2.9	84
27	Clusters and Nanomaterials for Sustainable Energy. ACS Energy Letters, 2020, 5, 428-429.	8.8	4
28	Penta-BCN: A New Ternary Pentagonal Monolayer with Intrinsic Piezoelectricity. Journal of Physical Chemistry Letters, 2020, 11, 3501-3506.	2.1	80
29	Yttrium–Sodium Halides as Promising Solid-State Electrolytes with High Ionic Conductivity and Stability for Na-Ion Batteries. Journal of Physical Chemistry Letters, 2020, 11, 3376-3383.	2.1	43
30	Record-high stability and compactness of multiply-charged clusters aided by selected terminal groups. Physical Chemistry Chemical Physics, 2020, 22, 4880-4883.	1.3	7
31	Hydrogenated C ₆₀ as High-Capacity Stable Anode Materials for Li Ion Batteries. ACS Applied Energy Materials, 2019, 2, 6453-6460.	2.5	19
32	Lattice Dynamic and Instability in Pentasilicene: A Light Single-Element Ferroelectric Material With High Curie Temperature. Physical Review Applied, 2019, 11, .	1.5	24
33	Stable Tetra―and Pentaâ€Anions in the Gas Phase. Angewandte Chemie, 2019, 131, 11370-11374.	1.6	0
34	Boosting the Curie Temperature of Two-Dimensional Semiconducting Crl ₃ Monolayer through van der Waals Heterostructures. Journal of Physical Chemistry C, 2019, 123, 17987-17993.	1.5	74
35	Boronated holey graphene: a case of 2D ferromagnetic metal. Physical Chemistry Chemical Physics, 2019, 21, 21128-21135.	1.3	3
36	Ligand stabilization of manganocene dianions – in defiance of the 18-electron rule. Physical Chemistry Chemical Physics, 2019, 21, 24300-24307.	1.3	6

#	Article	IF	CITATIONS
37	Conserved Vibrational Coherence in the Ultrafast Rearrangement of 2-Nitrotoluene Radical Cation. Journal of Physical Chemistry A, 2019, 123, 1140-1152.	1.1	24
38	A high-pressure induced stable phase of Li ₂ MnSiO ₄ as an effective poly-anion cathode material from simulations. Journal of Materials Chemistry A, 2019, 7, 16406-16413.	5.2	6
39	Stable Tetra―and Pentaâ€Anions in the Gas Phase. Angewandte Chemie - International Edition, 2019, 58, 11248-11252.	7.2	19
40	Rational Design of Stable Dianions and the Concept of Super-Chalcogens. Journal of Physical Chemistry A, 2019, 123, 5753-5761.	1.1	10
41	Condensed Matter in Energy, Environment, and Beyond. Advances in Condensed Matter Physics, 2019, 2019, 1-2.	0.4	0
42	Superhalogens as Building Blocks of Super Lewis Acids. ChemPhysChem, 2019, 20, 1607-1612.	1.0	11
43	Mechanistic Insight into Photocatalytic Pathways of MIL-100(Fe)/TiO ₂ Composites. ACS Applied Materials & Interfaces, 2019, 11, 12516-12524.	4.0	103
44	Tetragonal C ₂₄ : a topological nodal-surface semimetal with potential as an anode material for sodium ion batteries. Journal of Materials Chemistry A, 2019, 7, 5733-5739.	5.2	72
45	Structural dynamics of a metal–organic framework induced by CO2 migration in its non-uniform porous structure. Nature Communications, 2019, 10, 999.	5.8	54
46	Interfacial properties of penta-graphene-metal contacts. Journal of Applied Physics, 2019, 125, .	1.1	11
47	Stable Tetra―and Pentaâ€Anions in the Gas Phase. Angewandte Chemie, 2019, 131, 11246.	1.6	0
48	Sodium Superionic Conductors Based on Clusters. ACS Applied Materials & Interfaces, 2019, 11, 963-972.	4.0	44
49	Effect of Coulomb Correlation on the Magnetic Properties of Mn Clusters. Journal of Physical Chemistry A, 2018, 122, 4350-4356.	1.1	4
50	Dissociation dynamics of 3- and 4-nitrotoluene radical cations: Coherently driven C–NO2 bond homolysis. Journal of Chemical Physics, 2018, 148, 134305.	1.2	17
51	Bipolar Magnetic Materials Based on 2D Ni[TCNE] Metal–Organic Coordination Networks. Advanced Electronic Materials, 2018, 4, 1700323.	2.6	17
52	The rise of twoâ€dimensional van der Waals ferroelectrics. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2018, 8, e1365.	6.2	127
53	Co-mixing hydrogen and methane may double the energy storage capacity. Journal of Materials Chemistry A, 2018, 6, 8916-8922.	5.2	22
54	Simultaneous Detection and Removal of Formaldehyde at Room Temperature: Janus Au@ZnO@ZIF-8 Nanoparticles. Nano-Micro Letters, 2018, 10, 4.	14.4	84

#	Article	IF	CITATIONS
55	B(SCN) ₄ [–] : A New Weakly Coordinating Anion in the Tetracyanoborate Family. Journal of Physical Chemistry C, 2018, 122, 13371-13375.	1.5	5
56	Super-alkalis as building blocks of one-dimensional hierarchical electrides. Nanoscale, 2018, 10, 22963-22969.	2.8	13
57	Super Atomic Clusters: Design Rules and Potential for Building Blocks of Materials. Chemical Reviews, 2018, 118, 5755-5870.	23.0	426
58	Discovery of a high-pressure phase of rutile-like CoO ₂ and its potential as a cathode material. Journal of Materials Chemistry A, 2018, 6, 18449-18457.	5.2	9
59	A new 3D Dirac nodal-line semi-metallic graphene monolith for lithium ion battery anode materials. Journal of Materials Chemistry A, 2018, 6, 13816-13824.	5.2	44
60	Interpenetrating silicene networks: A topological nodal-line semimetal with potential as an anode material for sodium ion batteries. Physical Review Materials, 2018, 2, .	0.9	21
61	Bodyâ€Centered Tetragonal C ₁₆ : A Novel Topological Nodeâ€Line Semimetallic Carbon Composed of Tetrarings. Small, 2017, 13, 1602894.	5.2	65
62	Rational design of super-alkalis and their role in CO ₂ activation. Nanoscale, 2017, 9, 4891-4897.	2.8	58
63	Superhalogen-based lithium superionic conductors. Journal of Materials Chemistry A, 2017, 5, 13373-13381.	5.2	55
64	Rational Design of Stable Dianions by Functionalizing Polycyclic Aromatic Hydrocarbons. ChemPhysChem, 2017, 18, 1937-1942.	1.0	3
65	Role of ligands in the stability of B _n X _n and CB _{nâ^'1} X _n (n = 5–10; X = H, F, CN) and their potential as building blocks of electrolytes in lithium ion batteries. Physical Chemistry Chemical Physics, 2017, 19, 17937-17943.	1.3	24
66	B ₁₂ (SCN) ₁₂ [–] : An Ultrastable Weakly Coordinating Dianion. Journal of Physical Chemistry C, 2017, 121, 7697-7702.	1.5	31
67	Quantum anomalous Hall effect in ferromagnetic transition metal halides. Physical Review B, 2017, 95,	1.1	110
68	Li-rich antiperovskite superionic conductors based on cluster ions. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11046-11051.	3.3	107
69	Exceptional Thermoelectric Properties of Layered GeAs ₂ . Chemistry of Materials, 2017, 29, 9300-9307.	3.2	80
70	Titelbild: Colossal Stability of Gasâ€Phase Trianions: Superâ€Pnictogens (Angew. Chem. 43/2017). Angewandte Chemie, 2017, 129, 13333-13333.	1.6	0
71	Colossal Stability of Gasâ€Phase Trianions: Superâ€Pnictogens. Angewandte Chemie, 2017, 129, 13606-13610.	1.6	6
72	Colossal Stability of Gasâ€Phase Trianions: Superâ€Pnictogens. Angewandte Chemie - International Edition, 2017, 56, 13421-13425.	7.2	23

#	Article	IF	CITATIONS
73	Valley-Polarized Quantum Anomalous Hall Effect in Ferrimagnetic Honeycomb Lattices. Physical Review Letters, 2017, 119, 046403.	2.9	64
74	Atomic-Level Design of Water-Resistant Hybrid Perovskites for Solar Cells by Using Cluster Ions. Journal of Physical Chemistry Letters, 2017, 8, 3726-3733.	2.1	15
75	Giant Valley Splitting and Valley Polarized Plasmonics in Group V Transition-Metal Dichalcogenide Monolayers. Journal of Physical Chemistry Letters, 2017, 8, 5764-5770.	2.1	19
76	Γ̈́-Graphene: A New Metallic Allotrope of Planar Carbon with Potential Applications as Anode Materials for Lithium-Ion Batteries. Journal of Physical Chemistry Letters, 2017, 8, 3234-3241.	2.1	205
77	Substituent‣tabilized Organic Dianions in the Gas Phase and Their Potential Use as Electrolytes in Lithiumâ€Ion Batteries. ChemPhysChem, 2016, 17, 2992-2997.	1.0	4
78	Stability of B ₁₂ (CN) ₁₂ ^{2â^'} : Implications for Lithium and Magnesium Ion Batteries. Angewandte Chemie, 2016, 128, 3768-3772.	1.6	28
79	Like Charges Attract?. Journal of Physical Chemistry Letters, 2016, 7, 2689-2695.	2.1	26
80	Stability of B ₁₂ (CN) ₁₂ ^{2â^`} : Implications for Lithium and Magnesium Ion Batteries. Angewandte Chemie - International Edition, 2016, 55, 3704-3708.	7.2	72
81	Enhanced Carbon Dioxide Capture from Landfill Gas Using Bifunctionalized Benzimidazole-Linked Polymers. ACS Applied Materials & Interfaces, 2016, 8, 14648-14655.	4.0	76
82	Molecular Origin of Properties of Organic–Inorganic Hybrid Perovskites: The Big Picture from Small Clusters. Journal of Physical Chemistry Letters, 2016, 7, 1596-1603.	2.1	60
83	Quantum Phase Transition in Germanene and Stanene Bilayer: From Normal Metal to Topological Insulator. Journal of Physical Chemistry Letters, 2016, 7, 1919-1924.	2.1	33
84	Strain and carrier-induced coexistence of topologically insulating and superconducting phase in iodized Si(111) films. Nano Research, 2016, 9, 1578-1589.	5.8	6
85	Negative thermal expansion and associated anomalous physical properties: review of the lattice dynamics theoretical foundation. Reports on Progress in Physics, 2016, 79, 066503.	8.1	211
86	Valley contrasting in epitaxial growth of In/Tl homoatomic monolayer with anomalous Nernst conductance. Physical Review B, 2016, 94, .	1.1	7
87	Assembling π-Conjugated Molecules with Negative Gaussian Curvature for Efficient Carbon-Based Metal-Free Thermoelectric Material. Journal of Physical Chemistry C, 2016, 120, 27829-27833.	1.5	7
88	Ferromagnetic and Half-Metallic FeC ₂ Monolayer Containing C ₂ Dimers. ACS Applied Materials & Interfaces, 2016, 8, 26207-26212.	4.0	58
89	Superhalogens as building blocks of two-dimensional organic–inorganic hybrid perovskites for optoelectronics applications. Nanoscale, 2016, 8, 17836-17842.	2.8	34
90	Cluster-Inspired Design of High-Capacity Anode for Li-Ion Batteries. ACS Energy Letters, 2016, 1, 202-208.	8.8	23

#	Article	IF	CITATIONS
91	SiTe monolayers: Si-based analogues of phosphorene. Journal of Materials Chemistry C, 2016, 4, 6353-6361.	2.7	54

Structure and Properties of Egyptian Blue Monolayer Family: XCuSi₄O₁₀ (X =) Tj ETQq0 $\frac{0.0}{2.1}$ rgBT / $\frac{0.0}{24}$ rgBT

93	From Halogen to Superhalogen Behavior of Organic Molecules Created by Functionalizing Benzene. ChemPhysChem, 2016, 17, 184-189.	1.0	11
94	Organo–Zintl Clusters [P ₇ R ₄]: A New Class of Superalkalis. Journal of Physical Chemistry Letters, 2016, 7, 800-805.	2.1	56
95	Super-ion inspired colorful hybrid perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 4728-4737.	5.2	84
96	Beyond Graphitic Carbon Nitride: Nitrogen-Rich Penta-CN ₂ Sheet. Journal of Physical Chemistry C, 2016, 120, 3993-3998.	1.5	167
97	Exfoliating biocompatible ferromagnetic Cr-trihalide monolayers. Physical Chemistry Chemical Physics, 2016, 18, 8777-8784.	1.3	273
98	High-temperature superconductivity in heavily N- or B-doped graphene. Physical Review B, 2015, 92, .	1.1	45
99	A New Silicon Phase with Direct Band Gap and Novel Optoelectronic Properties. Scientific Reports, 2015, 5, 14342.	1.6	74
100	Electronic Structure and Stability of Mono- and Bimetallic Borohydrides and Their Underlying Hydrogen-Storage Properties: A Cluster Study. Journal of Physical Chemistry C, 2015, 119, 11056-11061.	1.5	11
101	Penta-graphene: A new carbon allotrope. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2372-2377.	3.3	1,114
102	Atomic Clusters: Opportunities in the Face of Challenges. Journal of Physical Chemistry Letters, 2015, 6, 1549-1552.	2.1	17
103	Unusual stability of multiply charged organo-metallic complexes. RSC Advances, 2015, 5, 44003-44008.	1.7	16
104	Superhalogens: A Bridge between Complex Metal Hydrides and Li Ion Batteries. Journal of Physical Chemistry Letters, 2015, 6, 1119-1125.	2.1	38
105	A new C=C embedded porphyrin sheet with superior oxygen reduction performance. Nano Research, 2015, 8, 2901-2912.	5.8	35
106	New Phosphorene Allotropes Containing Ridges with 2- and 4-Coordination. Journal of Physical Chemistry C, 2015, 119, 24674-24680.	1.5	37
107	Catalytic activities of platinum nanotubes: a density functional study. European Physical Journal B, 2015, 88, 1.	0.6	2
108	Atomically Thin Transition-Metal Dinitrides: High-Temperature Ferromagnetism and Half-Metallicity. Nano Letters, 2015, 15, 8277-8281.	4.5	168

7

#	Article	IF	CITATIONS
109	Ag–Ag dispersive interaction and physical properties of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi mathvariant="normal">Ag </mml:mi </mml:mrow> <mml:mn> 3 </mml:mn> </mml:msub> <mml:mi> Co </mml:mi> /> <mml:mn> 6 </mml:mn> . Physical Review B, 2014, 90, .</mml:math 	: mml:mo>	(<7mml:mo>
110	Tailoring Li adsorption on graphene. Physical Review B, 2014, 90, .	1.1	42
111	Chainâ€like structures of gold supported by silicon substrate (Phys. Status Solidi B 5/2014). Physica Status Solidi (B): Basic Research, 2014, 251, .	0.7	0
112	Self-consistent determination of Hubbard <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>U</mml:mi>for explaining the anomalous magnetism of the Gd<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow /xcmml:mps13z/mml:mpsc/mml:msub>cluster_Physical Review B_2014_89</mml:mrow </mml:msub></mml:math </mml:math 	1.1	26
113	Chainâ€like structures of gold supported by silicon substrate. Physica Status Solidi (B): Basic Research, 2014, 251, 924-932.	0.7	0
114	The viability of aluminum Zintl anion moieties within magnesium-aluminum clusters. Journal of Chemical Physics, 2014, 140, 124309.	1.2	35
115	A phenomenological expression to describe the temperature dependence of pressure-induced softening in negative thermal expansion materials. Journal of Physics Condensed Matter, 2014, 26, 115402.	0.7	18
116	Aromatic Superhalogens. Chemistry - A European Journal, 2014, 20, 4736-4745.	1.7	49
117	Superalkalis and Superhalogens As Building Blocks of Supersalts. Journal of Physical Chemistry A, 2014, 118, 638-645.	1.1	119
118	Potential of ZrO clusters as replacement Pd catalyst. Journal of Chemical Physics, 2014, 141, 034301.	1.2	1
119	Superhalogens as Building Blocks of Halogenâ€Free Electrolytes in Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2014, 53, 13916-13919.	7.2	117
120	Common origin of negative thermal expansion and other exotic properties in ceramic and hybrid materials. Physical Review B, 2014, 89, .	1.1	42
121	Pressure-Induced Magnetic Crossover Driven by Hydrogen Bonding in CuF2(H2O)2(3-chloropyridine). Scientific Reports, 2014, 4, 6054.	1.6	20
122	Unusual Magnetic Properties of Functionalized Graphene Nanoribbons. Journal of Physical Chemistry Letters, 2013, 4, 2482-2488.	2.1	22
123	Simulation study of pressure and temperature dependence of the negative thermal expansion in Zn(CN) <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml="http: 1998="" display="inline" math="" mathml"="" www.w3.org=""><mml:msub><mml="http: 1998="" display="inline" math="" mathml"="" www.w3.org=""><mml:msub><mml="http: 1998="" display="inline" math="" mathml"="" www.w3.org=""><mml:msub></mml:msub></mml="http:><mml:msub></mml:msub></mml:msub></mml="http:><mml:msub></mml:msub></mml:msub></mml="http:></mml:msub><td>1.1</td><td>46</td></mml:math>	1.1	46
124	Synthesis, Characterization, and Atomistic Modeling of Stabilized Highly Pyrophoric Al(BH ₄) ₃ via the Formation of the Hypersalt K[Al(BH ₄) ₄]. Journal of Physical Chemistry C, 2013, 117, 19905-19915.	1.5	50
125	Functionalized Graphitic Carbon Nitride for Efficient Energy Storage. Journal of Physical Chemistry C, 2013, 117, 6055-6059.	1.5	171
126	Beyond the Periodic Table of Elements: The Role of Superatoms. Journal of Physical Chemistry Letters, 2013, 4, 1432-1442.	2.1	248

#	Article	IF	CITATIONS
127	Structure, Stability, and Property Modulations of Stoichiometric Graphene Oxide. Journal of Physical Chemistry C, 2013, 117, 1064-1070.	1.5	22
128	Pressure-induced softening as a common feature of framework structures with negative thermal expansion. Physical Review B, 2013, 87, .	1.1	49
129	Hydroxyl-decorated graphene systems as candidates for organic metal-free ferroelectrics, multiferroics, and high-performance proton battery cathode materials. Physical Review B, 2013, 87, .	1.1	100
130	Patterning Graphitic C–N Sheets into a Kagome Lattice for Magnetic Materials. Journal of Physical Chemistry Letters, 2013, 4, 259-263.	2.1	55
131	Temperature-dependent pressure-induced softening in Zn(CN) <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub>. Physical Review B, 2013, 88, .</mml:math 	1.1	27
132	Electrical transition of (3,3) carbon nanotube on patterned hydrogen terminated Si(001)-2 × 1 driven electric field. Journal of Applied Physics, 2012, 111, 123717.	by _{1.1}	1
133	Magnetic properties of two dimensional silicon carbide triangular nanoflakes-based kagome lattices. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	5
134	Strain-Induced Spin Crossover in Phthalocyanine-Based Organometallic Sheets. Journal of Physical Chemistry Letters, 2012, 3, 3109-3114.	2.1	54
135	Highly selective CO2/CH4 gas uptake by a halogen-decorated borazine-linked polymer. Journal of Materials Chemistry, 2012, 22, 13524.	6.7	95
136	Zn in the +III Oxidation State. Journal of the American Chemical Society, 2012, 134, 8400-8403.	6.6	45
137	Density Functional Theory Study of the Interaction of Hydrogen with Li ₆ C ₆₀ . Journal of Physical Chemistry Letters, 2012, 3, 1084-1088.	2.1	48
138	Tuning magnetic properties of graphene nanoribbons with topological line defects: From antiferromagnetic to ferromagnetic. Physical Review B, 2012, 85, .	1.1	67
139	Electric field-induced metallic transition of (3,3) carbon nanotube supported on patterned hydrogen-terminated Si(001):1Â×Â1 surface. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	0
140	Sc-phthalocyanine sheet: Promising material for hydrogen storage. Applied Physics Letters, 2011, 99, .	1.5	32
141	Ferromagnetism in Two-Dimensional Carbon Chains Linked by 1,3,5-Benzenetriyl Units. Journal of Physical Chemistry C, 2011, 115, 19621-19625.	1.5	11
142	Synthesis and characterization of highly porous borazine-linked polymers and their performance in hydrogen storage application. Journal of Materials Chemistry, 2011, 21, 10629.	6.7	57
143	Enhanced Hydrogen Storage on Li Functionalized BC ₃ Nanotube. Journal of Physical Chemistry C, 2011, 115, 6136-6140.	1.5	38
144	Materials for Hydrogen Storage: Past, Present, and Future. Journal of Physical Chemistry Letters, 2011, 2, 206-211.	2.1	818

#	Article	IF	CITATIONS
145	Ti-doped nano-porous graphene: A material for hydrogen storage and sensor. Frontiers of Physics, 2011, 6, 204-208.	2.4	21
146	Indicator to estimate temperature sensitivity of resonance in temperature measurement by neutron resonance spectroscopy. Nuclear Instruments & Methods in Physics Research B, 2011, 269, 528-538.	0.6	5
147	Plane-wave pseudopotential study for the structural stability of Hf: The role of spin–orbit interaction. Physica B: Condensed Matter, 2011, 406, 1744-1748.	1.3	16
148	Intrinsic ferromagnetism in two-dimensional carbon structures: Triangular graphene nanoflakes linked by carbon chains. Physical Review B, 2011, 84, .	1.1	40
149	Hyperhalogens: Discovery of a New Class of Highly Electronegative Species. Angewandte Chemie - International Edition, 2010, 49, 8966-8970.	7.2	146
150	High-pressure lattice dynamic and thermodynamic properties of Ir by first-principles calculation. Physica B: Condensed Matter, 2010, 405, 732-737.	1.3	19
151	Probing the existence of energetically degenerate cluster isomers by chemical tagging. Applied Physics Letters, 2010, 97, 223104.	1.5	1
152	Electronic and magnetic properties of a BN sheet decorated with hydrogen and fluorine. Physical Review B, 2010, 81, .	1.1	278
153	Geometry, Electronic Properties, and Hydrogen Adsorption Properties of Li ₃ N-Based Nanostructures. Journal of Physical Chemistry C, 2010, 114, 19202-19205.	1.5	8
154	Superhalogen Properties of Fluorinated Coinage Metal Clusters. Journal of Physical Chemistry C, 2010, 114, 16018-16024.	1.5	101
155	Mg-doped GaN nanostructures: Energetics, magnetism, and H2 adsorption. Applied Physics Letters, 2009, 94, 013108.	1.5	17
156	COMPUTATIONAL DESIGN OF NANOMATERIALS FOR HYDROGEN STORAGE. , 2009, , .		2
157	Theoretical Study of Hydrogen Storage in Ca-Coated Fullerenes. Journal of Chemical Theory and Computation, 2009, 5, 374-379. Magnetic properties of transition-metal-doped <mml:math< td=""><td>2.3</td><td>130</td></mml:math<>	2.3	130
158	xmlns:mml="http://www.w3.org/1998/Math/MathML"		

#	Article	IF	CITATIONS
163	Dependence of Magnetism on Doping Concentration in V-Doped Bulk ZnO. Materials Transactions, 2008, 49, 2469-2473.	0.4	6
164	Theoretical study of deep-defect states in bulk PbTe and in thin films. Physical Review B, 2007, 76, .	1.1	57
165	Clusters: A bridge across the disciplines of physics and chemistry. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10560-10569.	3.3	218
166	Clusters: A bridge across the disciplines of environment, materials science, and biology. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10554-10559.	3.3	88
167	Role of titanium in hydrogen desorption in crystalline sodium alanate. Applied Physics Letters, 2005, 86, 251913.	1.5	69
168	Rational Design of Endohedral Superhalogens without Using Metal Cations and Electron Counting Rules. Journal of Physical Chemistry A, 0, , .	1.1	3
169	Signature of Au as a Halogen. Journal of Physical Chemistry Letters, 0, , 4721-4728.	2.1	4