Shengfeng Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2858588/publications.pdf

Version: 2024-02-01

218677 197818 2,633 58 26 49 citations g-index h-index papers 58 58 58 3454 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Genomic analysis of the immune gene repertoire of amphioxus reveals extraordinary innate complexity and diversity. Genome Research, 2008, 18, 1112-1126.	5.5	359
2	Amphioxus functional genomics and the origins of vertebrate gene regulation. Nature, 2018, 564, 64-70.	27.8	224
3	Discovery of an Active RAG Transposon Illuminates the Origins of V(D)J Recombination. Cell, 2016, 166, 102-114.	28.9	170
4	HaploMerger2: rebuilding both haploid sub-assemblies from high-heterozygosity diploid genome assembly. Bioinformatics, 2017, 33, 2577-2579.	4.1	170
5	A Short-Form C-Type Lectin from Amphioxus Acts as a Direct Microbial Killing Protein via Interaction with Peptidoglycan and Glucan. Journal of Immunology, 2007, 179, 8425-8434.	0.8	164
6	The phylogenetic analysis of tetraspanins projects the evolution of cell–cell interactions from unicellular to multicellular organisms. Genomics, 2005, 86, 674-684.	2.9	138
7	Decelerated genome evolution in modern vertebrates revealed by analysis of multiple lancelet genomes. Nature Communications, 2014, 5, 5896.	12.8	136
8	HaploMerger: Reconstructing allelic relationships for polymorphic diploid genome assemblies. Genome Research, 2012, 22, 1581-1588.	5.5	104
9	Zebrafish TRIF, a Golgi-Localized Protein, Participates in IFN Induction and NF-κB Activation. Journal of Immunology, 2008, 180, 5373-5383.	0.8	80
10	An amphioxus TLR with dynamic embryonic expression pattern responses to pathogens and activates NF-κB pathway via MyD88. Molecular Immunology, 2009, 46, 2348-2356.	2.2	71
11	APASdb: a database describing alternative poly(A) sites and selection of heterogeneous cleavage sites downstream of poly(A) signals. Nucleic Acids Research, 2015, 43, D59-D67.	14.5	71
12	Dynamic landscape of tandem 3′ UTRs during zebrafish development. Genome Research, 2012, 22, 1899-1906.	5 . 5	65
13	Genes "Waiting―for Recruitment by the Adaptive Immune System: The Insights from Amphioxus. Journal of Immunology, 2005, 174, 3493-3500.	0.8	58
14	The Evolution and Regulation of the Mucosal Immune Complexity in the Basal Chordate Amphioxus. Journal of Immunology, 2011, 186, 2042-2055.	0.8	55
15	Genomic and Functional Uniqueness of the TNF Receptor-Associated Factor Gene Family in Amphioxus, the Basal Chordate. Journal of Immunology, 2009, 183, 4560-4568.	0.8	48
16	A Novel C1q Family Member of Amphioxus Was Revealed to Have a Partial Function of Vertebrate C1q Molecule. Journal of Immunology, 2008, 181, 7024-7032.	0.8	47
17	Amphioxus SARM Involved in Neural Development May Function as a Suppressor of TLR Signaling. Journal of Immunology, 2010, 184, 6874-6881.	0.8	44
18	Molecular and biochemical characterization of galectin from amphioxus: primitive galectin of chordates participated in the infection processes. Glycobiology, 2007, 17, 774-783.	2.5	37

#	Article	IF	CITATIONS
19	New insights on unspecific peroxygenases: superfamily reclassification and evolution. BMC Evolutionary Biology, 2019, 19, 76.	3.2	37
20	Amphioxus as a model for investigating evolution of the vertebrate immune system. Developmental and Comparative Immunology, 2015, 48, 297-305.	2.3	36
21	The RAG transposon is active through the deuterostome evolution and domesticated in jawed vertebrates. Immunogenetics, 2017, 69, 391-400.	2.4	36
22	Comparative Immune Systems in Animals. Annual Review of Animal Biosciences, 2014, 2, 235-258.	7.4	33
23	Functional Characterization of a Ficolin-mediated Complement Pathway in Amphioxus. Journal of Biological Chemistry, 2011, 286, 36739-36748.	3.4	32
24	Two apextrin-like proteins mediate extracellular and intracellular bacterial recognition in amphioxus. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13469-13474.	7.1	32
25	The Archaic Roles of the Amphioxus NF-lºB/llºB Complex in Innate Immune Responses. Journal of Immunology, 2013, 191, 1220-1230.	0.8	29
26	Characterization of bbtTICAM from amphioxus suggests the emergence of a MyD88-independent pathway in basal chordates. Cell Research, 2011, 21, 1410-1423.	12.0	28
27	Characterization of the Extrinsic Apoptotic Pathway in the Basal Chordate Amphioxus. Science Signaling, 2010, 3, ra66.	3.6	27
28	Genome-Wide Analyses of Amphioxus MicroRNAs Reveal an Immune Regulation via miR-92d Targeting C3. Journal of Immunology, 2013, 190, 1491-1500.	0.8	27
29	Functional Conservation and Innovation of Amphioxus RIP1-Mediated Signaling in Cell Fate Determination. Journal of Immunology, 2011, 187, 3962-3971.	0.8	24
30	Ancestral genetic complexity of arachidonic acid metabolism in Metazoa. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 1272-1284.	2.4	24
31	Bbt-TNFR1 and Bbt-TNFR2, two tumor necrosis factor receptors from Chinese amphioxus involve in host defense. Molecular Immunology, 2007, 44, 756-762.	2.2	22
32	Characterization of Amphioxus IFN Regulatory Factor Family Reveals an Archaic Signaling Framework for Innate Immune Response. Journal of Immunology, 2015, 195, 5657-5666.	0.8	22
33	The evolution of vertebrate tetraspanins: gene loss, retention, and massive positive selection after whole genome duplications. BMC Evolutionary Biology, 2010, 10, 306.	3.2	21
34	Origin of the phagocytic respiratory burst and its role in gut epithelial phagocytosis in a basal chordate. Free Radical Biology and Medicine, 2014, 70, 54-67.	2.9	18
35	A pore-forming protein implements VLR-activated complement cytotoxicity in lamprey. Cell Discovery, 2017, 3, 17033.	6.7	17
36	The conservation and uniqueness of the caspase family in the basal chordate, amphioxus. BMC Biology, 2011, 9, 60.	3.8	15

3

#	Article	IF	CITATIONS
37	Identification and characterisation of a homolog of an activation gene for the recombination activating gene 1 (RAG 1) in amphioxus. Fish and Shellfish Immunology, 2005, 19, 165-174.	3.6	14
38	The conserved ancient role of chordate PIAS as a multilevel repressor of the NF-κB pathway. Scientific Reports, 2017, 7, 17063.	3.3	13
39	Dynamic Regulation of Tandem 3′ Untranslated Regions in Zebrafish Spleen Cells during Immune Response. Journal of Immunology, 2016, 196, 715-725.	0.8	11
40	Functional Variation of IL-1R–Associated Kinases in the Conserved MyD88–TRAF6 Pathway during Evolution. Journal of Immunology, 2020, 204, 832-843.	0.8	9
41	The Oxidative Burst System in Amphioxus. , 2016, , 153-165.		7
42	LanceletDB: an integrated genome database for lancelet, comparing domain types and combination in orthologues among lancelet and other species. Database: the Journal of Biological Databases and Curation, 2019, 2019, .	3.0	7
43	Broad distribution, high diversity and ancient origin of the ApeC-containing proteins. Molecular Phylogenetics and Evolution, 2021, 155, 107009.	2.7	7
44	The Nuclear DNA Content and Genetic Diversity of Lampetra morii. PLoS ONE, 2016, 11, e0157494.	2.5	7
45	Molecular mechanisms underlying the evolution of the slp76 signalosome. Scientific Reports, 2017, 7, 1509.	3.3	5
46	UPObase: an online database of unspecific peroxygenases. Database: the Journal of Biological Databases and Curation, 2019, 2019, .	3.0	5
47	Evaluation of Two Statistical Methods Provides Insights into the Complex Patterns of Alternative Polyadenylation Site Switching. PLoS ONE, 2015, 10, e0124324.	2.5	4
48	Chordate PIAS proteins act as conserved repressors of the TRAF6 self-polyubiquitination. Developmental and Comparative Immunology, 2020, 104, 103554.	2.3	4
49	More single-nucleotide mutations surround small insertions than small deletions in primates. Human Mutation, 2012, 33, 1099-1106.	2.5	3
50	Activity Augmentation of Amphioxus Peptidoglycan Recognition Protein BbtPGRP3 via Fusion with a Chitin Binding Domain. PLoS ONE, 2015, 10, e0140953.	2.5	3
51	The family of amphioxus chitin synthases offers insight into the evolution of chitin formation in chordates. Molecular Phylogenetics and Evolution, 2020, 143, 106691.	2.7	3
52	Small Insertions Are More Deleterious than Small Deletions in Human Genomes. Human Mutation, 2013, 34, 1642-1649.	2.5	2
53	Genomic and Transcriptomic View of Amphioxus Immunity. , 2016, , 57-84.		2
54	Identification and Characterization of the Amphioxus Lck and Its Associated Tyrosine Phosphorylation-Dependent Inhibitory LRR Receptor. Frontiers in Immunology, 2021, 12, 656366.	4.8	2

SHENGFENG HUANG

#	Article	IF	CITATIONS
55	HTS-PEG: A Method for High Throughput Sequencing of the Paired-Ends of Genomic Libraries. PLoS ONE, 2012, 7, e52257.	2.5	1
56	Primitive Adaptive Immune System of Amphioxus. , 2016, , 221-238.		1
57	Two Amphioxus ApeC-Containing Proteins Bind to Microbes and Inhibit the TRAF6 Pathway. Frontiers in Immunology, 2021, 12, 715245.	4.8	1
58	AliquotG: An Improved Heuristic Algorithm for Genome Aliquoting. PLoS ONE, 2013, 8, e64279.	2.5	1