

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2858321/publications.pdf Version: 2024-02-01

με λλμ

#	Article	IF	CITATIONS
1	Recent advances in isocyanide insertion chemistry. Chemical Society Reviews, 2013, 42, 5257.	38.1	512
2	Generation of Sulfonyl Radicals from Aryldiazonium Tetrafluoroborates and Sulfur Dioxide: The Synthesis of 3‧ulfonated Coumarins. Angewandte Chemie - International Edition, 2016, 55, 11925-11929.	13.8	285
3	Insertion of sulfur dioxide <i>via</i> a radical process: an efficient route to sulfonyl compounds. Organic Chemistry Frontiers, 2018, 5, 691-705.	4.5	270
4	Metalâ€Free Aminosulfonylation of Aryldiazonium Tetrafluoroborates with DABCOâ‹(SO ₂) ₂ and Hydrazines. Angewandte Chemie - International Edition, 2014, 53, 2451-2454.	13.8	257
5	Fixation of sulfur dioxide into small molecules. Organic and Biomolecular Chemistry, 2015, 13, 1592-1599.	2.8	239
6	Recent advances in photoinduced trifluoromethylation and difluoroalkylation. Organic Chemistry Frontiers, 2016, 3, 1163-1185.	4.5	228
7	Recent Advances in Pyridinium Salts as Radical Reservoirs in Organic Synthesis. ACS Catalysis, 2019, 9, 8943-8960.	11.2	225
8	Recent advances in the sulfonylation of alkenes with the insertion of sulfur dioxide <i>via</i> radical reactions. Chemical Communications, 2018, 54, 10405-10414.	4.1	184
9	Inorganic sulfites as the sulfur dioxide surrogates in sulfonylation reactions. Chemical Communications, 2019, 55, 1013-1019.	4.1	184
10	Recent advances in the sulfonylation of C–H bonds with the insertion of sulfur dioxide. Chemical Communications, 2018, 54, 12561-12569.	4.1	171
11	A palladium-catalyzed reaction of aryl halides, potassium metabisulfite, and hydrazines. Chemical Communications, 2012, 48, 10037.	4.1	166
12	Transition metal-catalyzed direct remote C–H functionalization of alkyl groups via C(sp ³)–H bond activation. Organic Chemistry Frontiers, 2015, 2, 169-178.	4.5	161
13	Molecular iodine: a highly efficient catalyst in the synthesis of quinolinesvia FriedlÃ ¤ der annulation. Organic and Biomolecular Chemistry, 2006, 4, 126-129.	2.8	153
14	Recent advances in sulfonylation reactions using potassium/sodium metabisulfite. Chemical Communications, 2020, 56, 4145-4155.	4.1	147
15	Effective Ring-Opening Reaction of Aziridines with Trimethylsilyl Compounds:  A Facile Access to β-Amino Acids and 1,2-Diamine Derivatives. Journal of Organic Chemistry, 2000, 65, 1344-1348.	3.2	135
16	Sulfur Dioxide Insertion Reactions for Organic Synthesis. Springer Briefs in Molecular Science, 2017, ,	0.1	135
17	A palladium-catalyzed three-component coupling of arylboronic acids, sulfur dioxide and hydrazines. Chemical Communications, 2012, 48, 7753.	4.1	133
18	A palladium-catalyzed three-component reaction for the preparation of quinazolin-4(3H)-imines. Chemical Communications, 2012, 48, 2903.	4.1	120

#	Article	IF	CITATIONS
19	Association of Estrogen Receptor Gene Polymorphisms With Susceptibility to Adolescent Idiopathic Scoliosis. Spine, 2006, 31, 1131-1136.	2.0	119
20	Preparation of quinazolino[3,2-a]quinazolines via a palladium-catalyzed three-component reaction of carbodiimide, isocyanide, and amine. Chemical Communications, 2012, 48, 3836.	4.1	111
21	Photoredox-Catalyzed Sulfonylation of <i>O</i> -Acyl Oximes via Iminyl Radicals with the Insertion of Sulfur Dioxide. Organic Letters, 2019, 21, 4950-4954.	4.6	103
22	A copper(<scp>i</scp>)-catalyzed three-component reaction of triethoxysilanes, sulfur dioxide, and alkyl halides. Organic Chemistry Frontiers, 2016, 3, 359-363.	4.5	99
23	Recent advances for the photoinduced C C bond cleavage of cycloketone oximes. Chinese Chemical Letters, 2020, 31, 3083-3094.	9.0	96
24	2â€Alkynylbenzaldehyde: A Versatile Building Block for the Generation of Cyclic Compounds. Asian Journal of Organic Chemistry, 2012, 1, 302-312.	2.7	95
25	Pharmacological targeting of MCL-1 promotes mitophagy and improves disease pathologies in an Alzheimer's disease mouse model. Nature Communications, 2020, 11, 5731.	12.8	94
26	Photoredox-catalyzed hydrosulfonylation reaction of electron-deficient alkenes with substituted Hantzsch esters and sulfur dioxide. Chemical Communications, 2019, 55, 6010-6013.	4.1	92
27	Access to Functionalized Isoquinoline <i>N</i> â€Oxides <i>via</i> Sequential Electrophilic Cyclization/Crossâ€Coupling Reactions. Advanced Synthesis and Catalysis, 2008, 350, 1850-1854.	4.3	91
28	Generation of N-aminosulfonamides via a photo-induced fixation of sulfur dioxide into aryl/alkyl halides. Organic Chemistry Frontiers, 2016, 3, 574-578.	4.5	91
29	Metal-catalyzed radical-type transformation of unactivated alkyl halides with C–C bond formation under photoinduced conditions. Organic Chemistry Frontiers, 2019, 6, 2183-2199.	4.5	89
30	A facile and highly efficient route to α-amino phosphonates via three-component reactions catalyzed by Mg(ClO4)2or molecular iodine. Organic and Biomolecular Chemistry, 2006, 4, 1663-1666.	2.8	86
31	Para-selective borylation of monosubstituted benzenes using a transient mediator. Science China Chemistry, 2020, 63, 336-340.	8.2	86
32	<i>N</i> â€Imide Ylideâ€Based Reactions: CH Functionalization, Nucleophilic Addition and Cycloaddition. Advanced Synthesis and Catalysis, 2014, 356, 3483-3504.	4.3	85
33	Vicinal Difluoroalkylation and Aminosulfonylation of Alkynes under Photoinduced Conditions. Chemistry - A European Journal, 2017, 23, 1032-1035.	3.3	85
34	A metal-free route to alkynyl sulfones under photoinduced conditions with the insertion of sulfur dioxide. Green Chemistry, 2020, 22, 1906-1910.	9.0	85
35	FriedlÄ ¤ der Synthesis of Quinolines Using a Lewis Acid-Surfactant-Combined Catalyst in Water. Advanced Synthesis and Catalysis, 2007, 349, 1047-1051.	4.3	84
36	Synthesis of Î ² -keto sulfones via a multicomponent reaction through sulfonylation and decarboxylation. Organic Chemistry Frontiers, 2017, 4, 617-621.	4.5	83

#	Article	IF	CITATIONS
37	Double carbometallation of alkynes: an efficient strategy for the construction of polycycles. Chemical Society Reviews, 2014, 43, 834-846.	38.1	82
38	Recent developments for the photoinduced Ar–X bond dissociation reaction. Organic Chemistry Frontiers, 2016, 3, 1011-1027.	4.5	82
39	Vicinal Difunctionalization of Alkenes through a Multicomponent Reaction with the Insertion of Sulfur Dioxide. Chemistry - A European Journal, 2017, 23, 9477-9480.	3.3	80
40	A copper(<scp>ii</scp>)-catalyzed three-component reaction of aryldiazonium tetrafluoroborates, sulfur dioxide, with alkenes. Organic Chemistry Frontiers, 2016, 3, 1498-1502.	4.5	79
41	A general route to sulfones via insertion of sulfur dioxide promoted by cobalt oxide. Organic Chemistry Frontiers, 2016, 3, 985-988.	4.5	79
42	Photoredox-catalyzed sulfonylation of alkyl iodides, sulfur dioxide, and electron-deficient alkenes. Chemical Communications, 2019, 55, 2214-2217.	4.1	79
43	Efficient Synthesis of 5 <i>H</i> -Cyclopenta[<i>c</i>]quinoline Derivatives via Palladium-Catalyzed Domino Reactions of <i>o</i> -Alkynylhalobenzene with Amine. Organic Letters, 2011, 13, 1150-1153.	4.6	78
44	Synthesis of 3-(Methylsulfonyl)benzo[<i>b</i>]thiophenes from Methyl(2-alkynylphenyl)sulfanes and Sodium Metabisulfite via a Radical Relay Strategy. Organic Letters, 2019, 21, 1156-1160.	4.6	78
45	<i>N</i> -Radical Initiated Aminosulfonylation of Unactivated C(sp ³)–H Bond through Insertion of Sulfur Dioxide. Organic Letters, 2017, 19, 4472-4475.	4.6	77
46	Synthesis of 3-((arylsulfonyl)methyl)indolin-2-ones via insertion of sulfur dioxide using anilines as the aryl source. Organic Chemistry Frontiers, 2017, 4, 1079-1083.	4.5	76
47	Synthesis of Î ² -Sulfonyl Amides through a Multicomponent Reaction with the Insertion of Sulfur Dioxide under Visible Light Irradiation. Organic Letters, 2019, 21, 1935-1938.	4.6	75
48	Aminosulfonylation of aromatic amines, sulfur dioxide and hydrazines. Chemical Communications, 2014, 50, 8886.	4.1	73
49	An unexpected reaction of aryldiazonium tetrafluoroborates, sodium metabisulfite, and thiourea under photoinduced conditions. Organic Chemistry Frontiers, 2019, 6, 1863-1867.	4.5	73
50	<i>N</i> â€Radicalâ€Initiated Cyclization through Insertion of Sulfur Dioxide under Photoinduced Catalystâ€Free Conditions. Chemistry - A European Journal, 2017, 23, 8176-8179.	3.3	72
51	Photoinduced Sulfonylation Reactions through the Insertion of Sulfur Dioxide. European Journal of Organic Chemistry, 2020, 2020, 1274-1287.	2.4	72
52	Palladium-Catalyzed Direct C–H Functionalization of Indoles with the Insertion of Sulfur Dioxide: Synthesis of 2-Sulfonated Indoles. Organic Letters, 2017, 19, 6638-6641.	4.6	71
53	Thiourea dioxide as a source of sulfonyl groups: photoredox generation of sulfones and sulfonamides from heteroaryl/aryl halides. Chemical Communications, 2019, 55, 2489-2492.	4.1	71
54	Aminosulfonylation of Arenes, Sulfur Dioxide, and Hydrazines Cocatalyzed by Gold(III) Chloride and Palladium Acetate. Advanced Synthesis and Catalysis, 2014, 356, 3225-3230.	4.3	70

#	Article	IF	CITATIONS
55	Copper(<scp>i</scp>)-catalyzed sulfonylation of (2-alkynylaryl)boronic acids with DABSO. Organic Chemistry Frontiers, 2016, 3, 693-696.	4.5	70
56	Multicatalytic Tandem Reactions of 2â€Alkynylbenzaldoximes with Isocyanides. Advanced Synthesis and Catalysis, 2009, 351, 2702-2708.	4.3	69
57	An unexpected reaction of 2-alkynylaryldiazonium tetrafluoroborate with sulfur dioxide. Chemical Communications, 2015, 51, 180-182.	4.1	69
58	Base-controlled [3+3] cycloaddition of isoquinoline N-oxides with azaoxyallyl cations. Chemical Communications, 2016, 52, 10415-10418.	4.1	69
59	Generation of (2-oxoindolin-3-yl)methanesulfonohydrazides via a photo-induced reaction of N-(2-iodoaryl)acrylamide, DABSO, and hydrazine. Organic Chemistry Frontiers, 2016, 3, 865-869.	4.5	69
60	A copper-catalyzed insertion of sulfur dioxide <i>via</i> radical coupling. Chemical Communications, 2020, 56, 3225-3228.	4.1	69
61	Synthesis of 1-(2,3-dihydrobenzofuran-3-yl)-methanesulfonohydrazides through insertion of sulfur dioxide. Chemical Communications, 2014, 50, 11746-11748.	4.1	68
62	Enantioselective Synthesis of Chiral-at-Cage <i>o</i> -Carboranes via Pd-Catalyzed Asymmetric B–H Substitution. Journal of the American Chemical Society, 2018, 140, 4508-4511.	13.7	67
63	Photocatalytic Reaction of Potassium Alkyltrifluoroborates and Sulfur Dioxide with Alkenes. Organic Letters, 2018, 20, 3605-3608.	4.6	67
64	Tertiary amines as highly efficient catalysts in the ring-opening reactions of epoxides with amines or thiols in H2O: expeditious approach to β-amino alcohols and I²-aminothioethers. Green Chemistry, 2005, 7, 708.	9.0	66
65	Gold(III) Chloride/Silver Triflate: A Highly Efficient Catalyst for Ringâ€Opening Reaction of Aziridines with Electronâ€Rich Arenes. Advanced Synthesis and Catalysis, 2007, 349, 2151-2155.	4.3	66
66	Facile Assembly of <i>H</i> â€Pyrazolo[5,1â€ <i>a</i>]isoquinolines <i>via</i> Silver Triflateâ€Catalyzed Oneâ€Pot Tandem Reaction of 2â€Alkynyl―benzaldehyde, Sulfonohydrazide, and Ketone or Aldehyde. Advanced Synthesis and Catalysis, 2010, 352, 2050-2056.	4.3	66
67	Generation of βâ€Halo Vinylsulfones through a Multicomponent Reaction with Insertion of Sulfur Dioxide. Chemistry - A European Journal, 2017, 23, 6996-6999.	3.3	66
68	Synthesis of Aromatic Sulfonamides through a Copper-Catalyzed Coupling of Aryldiazonium Tetrafluoroborates, DABCO·(SO ₂) ₂ , and <i>N</i> Chloroamines. Organic Letters, 2018, 20, 1167-1170.	4.6	66
69	Generation of sulfonated isobenzofuran-1(3 <i>H</i>)-ones under photocatalysis through the insertion of sulfur dioxide. Organic Chemistry Frontiers, 2018, 5, 813-816.	4.5	66
70	Silver Triflateâ€Catalyzed or Electrophileâ€Mediated Tandem Reaction of <i>N′</i> â€{2â€Alkynylbenzylidene)hydrazides with Dimethyl Acetylenedicarboxylate. Advanced Synthesis and Catalysis, 2009, 351, 1692-1698.	4.3	65
71	Removal of amino groups from anilines through diazonium salt-based reactions. Organic and Biomolecular Chemistry, 2014, 12, 6965.	2.8	65
72	Substituted Hantzsch esters as radical reservoirs with the insertion of sulfur dioxide under photoredox catalysis. Chemical Communications, 2019, 55, 2062-2065.	4.1	64

#	Article	lF	CITATIONS
73	Palladium-catalyzed direct sulfonylation of C–H bonds with the insertion of sulfur dioxide. Chemical Communications, 2017, 53, 12548-12551.	4.1	62
74	Efficient generation of indeno[1,2-c]chromenes via the Pd-catalyzed reaction of 2-alkynylhalobenzenes with 2-alkynylphenols. Chemical Communications, 2011, 47, 5298.	4.1	61
75	Copper-Catalyzed Regioselective 1,4-Selenosulfonylation of 1,3-Enynes to Access Cyanoalkylsulfonylated Allenes. Organic Letters, 2021, 23, 7472-7476.	4.6	61
76	An Efficient Route to 3â€Amidylindoles <i>via</i> a Palladium―Catalyzed Tandem Reaction of 2â€Alkynylanilines with Isocyanides. Advanced Synthesis and Catalysis, 2013, 355, 1579-1584.	4.3	60
77	Benzylic C(sp ³)–H bond sulfonylation of 4-methylphenols with the insertion of sulfur dioxide under photocatalysis. Chemical Communications, 2018, 54, 11172-11175.	4.1	60
78	Synthesis of β-hydroxysulfones through a copper(<scp>ii</scp>)-catalyzed multicomponent reaction with the insertion of sulfur dioxide. Organic Chemistry Frontiers, 2019, 6, 2254-2259.	4.5	60
79	Generation of benzosultams via a radical process with the insertion of sulfur dioxide. Organic Chemistry Frontiers, 2017, 4, 1121-1124.	4.5	59
80	Synthesis of Tetrahydropyridine Derivatives through a Reaction of 1,6-Enynes, Sulfur Dioxide, and Aryldiazonium Tetrafluoroborates. Organic Letters, 2017, 19, 6028-6031.	4.6	58
81	A copper-catalyzed sulfonylative C–H bond functionalization from sulfur dioxide and aryldiazonium tetrafluoroborates. Organic Chemistry Frontiers, 2018, 5, 366-370.	4.5	58
82	Synthesis of Sulfonated Benzo[<i>d</i>][1,3]oxazines by Merging Photoredox Catalysis and Insertion of Sulfur Dioxide. Advanced Synthesis and Catalysis, 2018, 360, 865-869.	4.3	58
83	Generation of sulfonated 1-isoindolinones through a multicomponent reaction with the insertion of sulfur dioxide. Chemical Communications, 2018, 54, 3891-3894.	4.1	57
84	Facile Assembly of 1â€{(Trifluoromethyl)thio]isoquinolines through Reaction of 2â€Alkynylbenzaldoxime with Silver (Trifluoromethyl)thiolate. European Journal of Organic Chemistry, 2014, 2014, 217-221.	2.4	56
85	Photoredox-catalyzed sulfonylation of difluoroenoxysilanes with the insertion of sulfur dioxide. Chemical Communications, 2020, 56, 9469-9472.	4.1	56
86	Recent advances in the direct β-C(sp ²)–H functionalization of enamides. Organic and Biomolecular Chemistry, 2020, 18, 1504-1521.	2.8	56
87	Expeditious approach to α-amino phosphonates via three-component solvent-free reactions catalyzed by NBS or CBr4. Green Chemistry, 2006, 8, 365.	9.0	54
88	A Route to <i>O</i> â€Aminosulfonates and Sulfonamides through Insertion of Sulfur Dioxide and Hydrogen Atom Transfer. Advanced Synthesis and Catalysis, 2017, 359, 2653-2659.	4.3	54
89	Photoinduced synthesis of allylic sulfones using potassium metabisulfite as the source of sulfur dioxide. Organic Chemistry Frontiers, 2019, 6, 36-40.	4.5	54
90	2-Alkynylbenzaldoxime: a versatile building block for the generation of N-heterocycles. Organic and Biomolecular Chemistry, 2014, 12, 9045-9053.	2.8	53

#	Article	IF	CITATIONS
91	C–H bond sulfonylation of anilines with the insertion of sulfur dioxide under metal-free conditions. Chemical Communications, 2018, 54, 7459-7462.	4.1	53
92	Photoredox-catalyzed sulfonylation of alkenylcyclobutanols with the insertion of sulfur dioxide through semipinacol rearrangement. Organic Chemistry Frontiers, 2019, 6, 1873-1878.	4.5	53
93	Access to axially chiral styrenes via a photoinduced asymmetric radical reaction involving a sulfur dioxide insertion. Chem Catalysis, 2022, 2, 164-177.	6.1	53
94	Multibranched benzylidene cyclopentanone dyes with large two-photon absorption cross-sections. New Journal of Chemistry, 2006, 30, 1098.	2.8	52
95	Silver triflate–copper(ii) acetate cooperative catalysis in a cascade reaction for concise synthesis of 2-carbonyl H-pyrazolo[5,1-a]isoquinolines. Chemical Communications, 2012, 48, 3975.	4.1	51
96	Synthesis of βâ€Keto Sulfones <i>via</i> Coupling of Aryl/Alkyl Halides, Sulfur Dioxide and Silyl Enolates through Metalâ€Free Photoinduced C–X Bond Dissociation. Advanced Synthesis and Catalysis, 2017, 359, 2999-3004.	4.3	51
97	Synthesis of sulfonated naphthols <i>via</i> C–H bond functionalization with the insertion of sulfur dioxide. Organic Chemistry Frontiers, 2018, 5, 371-375.	4.5	51
98	Direct C–H Methylsulfonylation of Alkenes with the Insertion of Sulfur Dioxide. Journal of Organic Chemistry, 2019, 84, 13159-13163.	3.2	51
99	Photoinduced intramolecular carbosulfonylation of alkynes: access to sulfone-containing dibenzazepines from sulfur dioxide. Chemical Communications, 2021, 57, 2883-2886.	4.1	51
100	RhCl(PPh3)3/DPPF: A Useful and Efficient Catalyst for Cross-Coupling Reactions of Activated Alkenyl Tosylates with Arylboronic Acids. European Journal of Organic Chemistry, 2006, 2006, 5260-5263.	2.4	50
101	Copper-catalyzed synthesis of sulfonamides from nitroarenes <i>via</i> the insertion of sulfur dioxide. Chemical Communications, 2020, 56, 3437-3440.	4.1	50
102	A Silver(I)-Catalyzed Tandem Reaction of 2-Alkynylbenzaldoxime with Alkylidenecyclopropane. Organic Letters, 2012, 14, 3430-3433.	4.6	49
103	Direct vicinal difunctionalization of alkynes through trifluoromethylation and aminosulfonylation via insertion of sulfur dioxide under catalyst-free conditions. Organic Chemistry Frontiers, 2016, 3, 1493-1497.	4.5	49
104	Sulfonylation of Benzylic Câ^'H Bonds through the Reaction of Aryl(<i>o</i> â€ŧolyl)methanones with Sulfonyl Hydrazides or Sulfonyl Chlorides. Chemistry - an Asian Journal, 2018, 13, 2543-2548.	3.3	49
105	Photoinduced synthesis of alkylalkynyl sulfones through a reaction of potassium alkyltrifluoroborates, sulfur dioxide, and alkynyl bromides. Organic Chemistry Frontiers, 2020, 7, 938-943.	4.5	49
106	Photoredox-catalyzed synthesis of sulfones through deaminative insertion of sulfur dioxide. Chemical Communications, 2019, 55, 14962-14964.	4.1	48
107	Metal-free insertion of sulfur dioxide with aryl iodides under ultraviolet irradiation: direct access to sulfonated cyclic compounds. Organic Chemistry Frontiers, 2020, 7, 14-18.	4.5	48
108	An efficient procedure for cleavage of aziridines with various thiols promoted by ZnCl2. Journal of the Chemical Society, Perkin Transactions 1, 2001, , 1314-1317.	1.3	47

#	Article	IF	CITATIONS
109	A highly efficient and general method for the ring-opening of aziridines with various nucleophiles in DMSO. Organic and Biomolecular Chemistry, 2006, 4, 4231.	2.8	47
110	Threeâ€Component Reaction of Potassium Alkyltrifluoroborates, Sulfur Dioxide and Allylic Bromides under Visible‣ight Irradiation. Asian Journal of Organic Chemistry, 2019, 8, 893-898.	2.7	47
111	Copper(II)-Catalyzed Reaction of 2,3-Allenoic Acids, Sulfur Dioxide, and Aryldiazonium Tetrafluoroborates: Route to 4-Sulfonylated Furan-2(5 <i>H</i>)-ones. Organic Letters, 2019, 21, 275-278.	4.6	47
112	Radical cyclization of benzene-tethered 1,7-enynes with aryldiazonium tetrafluoroborates: a facile route to benzo[j]phenanthridines. Organic Chemistry Frontiers, 2017, 4, 1318-1321.	4.5	46
113	Synthesis of βâ€Keto Sulfones by a Catalystâ€Free Reaction of Aryldiazonium Tetrafluoroborates, Sulfur Dioxide, and Silyl Enol Ethers. Chemistry - an Asian Journal, 2017, 12, 465-469.	3.3	46
114	4-Substituted Hantzsch Esters as Alkylation Reagents in Organic Synthesis. Acta Chimica Sinica, 2019, 77, 814.	1.4	46
115	Switchable Synthesis of 3 yanoindoles and 3â€Amidylindoles <i>via</i> a Palladiumâ€Catalyzed Reaction of <i>N</i> , <i>N</i> â€Dimethylâ€2â€alkynylaniline with Isocyanide. Advanced Synthesis and Catalysis, 2013, 355, 2441-2446.	4.3	45
116	Synthesis of trifluoromethylated 3,4-dihydroquinolin-2(1H)-ones via a photo-induced radical cyclization of benzene-tethered 1,7-enynes with Togni reagent. Organic Chemistry Frontiers, 2016, 3, 994-998.	4.5	45
117	Palladiumâ€Catalyzed Regioselective Crossâ€Coupling Reactions of 3â€Bromoâ€4â€tosyloxyquinolinâ€2(1 <i>H</i>)â€one with Arylboronic Acids. A Facile and Convenient Route to 3,4â€Disubstituted Quinolinâ€2(1 <i>H</i>)â€ones. Advanced Synthesis and Catalysis, 2007, 349, 1943-1948.	4.3	44
118	Generation of Sulfonyl Radicals from Aryldiazonium Tetrafluoroborates and Sulfur Dioxide: The Synthesis of 3‧ulfonated Coumarins. Angewandte Chemie, 2016, 128, 12104-12108.	2.0	44
119	Sulfonylation from sodium dithionite or thiourea dioxide. Chinese Chemical Letters, 2021, 32, 461-464.	9.0	44
120	Synthesis of 6-(sulfonylmethyl)phenanthridines through a reaction of aryldiazonium tetrafluoroborates, sulfur dioxide, and vinyl azides. Organic Chemistry Frontiers, 2018, 5, 2555-2559.	4.5	42
121	Metal- and solvent-free conditions for the acylation reaction catalyzed by carbon tetrabromide (CBr4). Green Chemistry, 2007, 9, 1022.	9.0	40
122	Rhodium/Nâ€Heterocyclic Carbene atalyzed Cross ouplings of Aryl Arenesulfonates with Arylboronic Acids. Advanced Synthesis and Catalysis, 2008, 350, 2409-2413.	4.3	40
123	An unexpected palladium-catalyzed reaction of 2-alkynylhalobenzene with 2-alkynylaniline: a novel and efficient route to 11H-indeno[1,2-c]quinolin-11-ols. Chemical Communications, 2011, 47, 8967.	4.1	40
124	Synthesis of benzosultams via an intramolecular sp ² C–H bond amination reaction of o-arylbenzenesulfonamides under metal-free conditions. Organic and Biomolecular Chemistry, 2014, 12, 149-155.	2.8	40
125	Facile Synthesis of 1â€{Isoquinolinâ€1â€yl)ureas by Silver Triflate Catalyzed Tandem Reactions of 2â€Alkynylbenzaldoximes with Carbodiimides. European Journal of Organic Chemistry, 2010, 2010, 6436-6439.	2.4	38
126	Recent advances in the applications of [1.1.1]propellane in organic synthesis. Chinese Chemical Letters, 2020, 31, 3065-3072.	9.0	38

#	Article	IF	CITATIONS
127	Palladium-catalyzed reaction of 2-alkynylhalobenzene with 2-alkynylbenzamide: an efficient approach to indeno[1,2-c]azepin-3(2H)-ones. Chemical Communications, 2011, 47, 11137.	4.1	37
128	Stereoselective Vicinal Difunctionalization of Alkynes through a Threeâ€Component Reaction of Alkynes, Sodium Sulfinates, and Togni Reagent. Advanced Synthesis and Catalysis, 2017, 359, 2605-2609.	4.3	37
129	Synthesis of 3-(Bromomethylene)isobenzofuran-1(3H)-ones through regioselective 5-exo-dig bromocyclization of 2-alkynylbenzoic acids. Tetrahedron, 2019, 75, 1663-1668.	1.9	37
130	Photoredox-Catalyzed α-Sulfonylation of Ketones from Sulfur Dioxide and Thianthrenium Salts. Organic Letters, 2022, 24, 2955-2960.	4.6	37
131	Ring Opening of Aziridines with Silylated Nucleophiles under Neutral Conditions. European Journal of Organic Chemistry, 2005, 2005, 4769-4772.	2.4	36
132	N-Heterocyclic Carbene: An Efficient Catalyst for the Ring-Opening Reaction of Aziridine with Acid Anhydride. European Journal of Organic Chemistry, 2006, 2006, 4787-4790.	2.4	36
133	Generation of N-Heterocycles via Tandem Reactions of <i>N</i> ′-(2-Alkynylbenzylidene)hydrazides. Chemical Record, 2016, 16, 19-34.	5.8	36
134	Recent advances in the functionalization of allenes via radical process. Tetrahedron, 2018, 74, 7290-7301.	1.9	36
135	Efficient access to aliphatic esters by photocatalyzed alkoxycarbonylation of alkenes with alkyloxalyl chlorides. Nature Communications, 2021, 12, 5328.	12.8	36
136	An iron-catalyzed multicomponent reaction of cycloketone oxime esters, alkenes, DABCO·(SO ₂) ₂ and trimethylsilyl azide. Organic Chemistry Frontiers, 2022, 9, 917-922.	4.5	36
137	Synthesis of Ester-Substituted Indolo[2,1- <i>a</i>]isoquinolines via Photocatalyzed Alkoxycarbonylation/Cyclization Reactions. Organic Letters, 2022, 24, 642-647.	4.6	36
138	Synthesis of thiophosphates through a three-component reaction by using sulfur dioxide as the sulfur source. Organic Chemistry Frontiers, 2017, 4, 2221-2225.	4.5	35
139	Recent advances in nitro-involved radical reactions. Organic Chemistry Frontiers, 2020, 7, 2873-2898.	4.5	35
140	Photoinduced synthesis of (<i>E</i>)-vinyl sulfones through the insertion of sulfur dioxide. Organic Chemistry Frontiers, 2018, 5, 3153-3157.	4.5	34
141	Access to chiral β-sulfonyl carbonyl compounds <i>via</i> photoinduced organocatalytic asymmetric radical sulfonylation with sulfur dioxide. Chemical Science, 2022, 13, 8834-8839.	7.4	34
142	Photoredoxâ€Catalyzed Functionalization of Alkenes with Thiourea Dioxide: Construction of Alkyl Sulfones or Sulfonamides. Chinese Journal of Chemistry, 2020, 38, 361-366.	4.9	32
143	Photoredox-catalyzed direct C(sp ²)–H difluoromethylation of enamides or heterocycles with [bis(difluoroacetoxy)iodo]benzene. Organic Chemistry Frontiers, 2021, 8, 5948-5954.	4.5	32
144	Generation of Diverse 2 <i>H</i> -Isoindol-1-ylphosphonates via Three-Component Reaction of 2-Alkynylbenzaldehyde, Aniline, and Phosphite. ACS Combinatorial Science, 2010, 12, 743-746.	3.3	31

#	Article	IF	CITATIONS
145	A general route to fluorinated 3,3-disubstituted 2-oxindoles via a photoinduced radical cyclization of N-arylacrylamides under catalyst-free conditions. Organic Chemistry Frontiers, 2016, 3, 570-573.	4.5	31
146	Intramolecular oxysulfonylation of alkenes with the insertion of sulfur dioxide under photocatalysis. Organic Chemistry Frontiers, 2018, 5, 2437-2441.	4.5	31
147	A Threeâ€Component Reaction of Aryldiazonium Tetrafluoroborates, Sulfur Dioxide, and 1â€(Propâ€2â€ynâ€1â€yl)indoles under Catalystâ€Free Conditions. Advanced Synthesis and Catalysis, 2019, 361 146-150.	,4.3	31
148	Generation of benzosultams via trifluoromethylation of 2-ethynylbenzenesulfonamide under visible light. Organic Chemistry Frontiers, 2016, 3, 901-905.	4.5	30
149	Catalystâ€Free Sulfonylation of (Hetero)aryl Iodides with Sodium Dithionite. Advanced Synthesis and Catalysis, 2019, 361, 1154-1159.	4.3	30
150	Photoinduced synthesis of 2-sulfonylacetonitriles with the insertion of sulfur dioxide under ultraviolet irradiation. Chemical Communications, 2020, 56, 2554-2557.	4.1	30
151	Threeâ€Component Reactions of 2â€Alkynylbenzaldoximes and α,βâ€Unsaturated Carbonyl Compounds with Bromine or Iodine Monochloride. Advanced Synthesis and Catalysis, 2010, 352, 1746-1751.	4.3	29
152	An unexpected silver triflate-catalyzed tandem reaction of N′-(2-alkynylbenzylidene)hydrazide with ketene. Chemical Communications, 2012, 48, 7049.	4.1	29
153	Synthesis of 3-(((2,3-dihydrobenzofuran-3-yl)methyl)sulfonyl) coumarins through the reaction of 2-(allyloxy)anilines, sulfur dioxide, and aryl propiolates. Organic Chemistry Frontiers, 2017, 4, 2455-2458.	4.5	28
154	C(sp ²)–H functionalization of aldehyde-derived hydrazones <i>via</i> a radical process. Organic and Biomolecular Chemistry, 2018, 16, 1227-1241.	2.8	28
155	Directing-Group-Assisted C(sp2)–H Arylsulfonylation from Sulfur Dioxide. Organic Letters, 2020, 22, 7094-7097.	4.6	28
156	Iminyl radical initiated sulfonylation of alkenes with rongalite under photoredox conditions. Organic Chemistry Frontiers, 2021, 8, 3746-3751.	4.5	28
157	Copper-catalyzed regio- and chemoselective selenosulfonylation of 1,6-enynes from sulfur dioxide. Organic Chemistry Frontiers, 2021, 8, 6119-6124.	4.5	28
158	Expeditious Approach to Coumarins via Pechmann Reaction Catalyzed by Molecular Iodine or AgOTf. Synthetic Communications, 2006, 36, 2949-2956.	2.1	26
159	Synthesis of sulfones via a reaction of aryldiazonium tetrafluoroborates, sulfur dioxide, and aryliodoniums. Tetrahedron, 2015, 71, 3359-3362.	1.9	26
160	A four-component reaction of aryldiazonium tetrafluoroborates, sulfur dioxide, 1,2-dibromoethane, and hydrazines. Organic and Biomolecular Chemistry, 2015, 13, 10370-10375.	2.8	26
161	Thiosulfonylation of alkenes with the insertion of sulfur dioxide under non-metallic conditions. Organic Chemistry Frontiers, 2018, 5, 2940-2944.	4.5	26
162	A multi-component reaction of electron-rich arenes, potassium metabisulfite, aldehydes and aryldiazonium tetrafluoroborates. Organic Chemistry Frontiers, 2021, 8, 1461-1465.	4.5	26

#	Article	IF	CITATIONS
163	Tandem metal-free oxidative radical 5-exo dearomative spirocyclization and ester migration: generation of 3-functionalized coumarins from alkynoates. Tetrahedron, 2016, 72, 279-284.	1.9	25
164	Metalâ€Free Synthesis of (<i>E</i>)â€Vinyl Sulfones <i>via</i> An Insertion of Sulfur Dioxide/1,5â€Hydrogen Atom Transfer Sequence. Advanced Synthesis and Catalysis, 2020, 362, 4744-4748.	4.3	25
165	Facile synthesis of chromeno[4,3-b]quinolin-6-ones from unexpected reactions of aryl isocyanides with 4-chloro-2-oxo-2H-chromene-3-carbaldehyde. Organic and Biomolecular Chemistry, 2006, 4, 1348.	2.8	24
166	Alkoxycarbonyl radicals from alkyloxalyl chlorides: photoinduced synthesis of isoquinolinediones under visible light irradiation. Organic Chemistry Frontiers, 2021, 8, 6704-6709.	4.5	24
167	Construction of sulfonated spiro[5,5]trienones from sulfur dioxide <i>via</i> iron-catalyzed dearomative spirocyclization of biaryls. Organic Chemistry Frontiers, 2022, 9, 1937-1942.	4.5	24
168	Generation of 1-(trifluoromethyl)isoquinolines via a copper-catalyzed reaction of isoquinoline-N-oxide with Togni reagent. Organic Chemistry Frontiers, 2014, 1, 924-928.	4.5	23
169	Regioselective 5-exo-dig oxy-cyclization of 2-alkynylbenzamide for the synthesis of isobenzofuran-1-imines and isobenzofuran. Organic and Biomolecular Chemistry, 2018, 16, 4501-4508.	2.8	23
170	Synergistic photoredox and tertiary amine catalysis: generation of allylic sulfones from Morita–Baylis–Hillman acetates and sulfur dioxide. Organic Chemistry Frontiers, 2021, 8, 3308-3313.	4.5	23
171	Synthesis of β-cyanoalkylsulfonylated vinyl selenides through a four-component reaction. Chemical Communications, 2021, 57, 12603-12606.	4.1	23
172	A Highly Efficient Catalyst FeCl3 in the Synthesis ofα-Amino Phosphonates via Three-component Reactions. Chinese Journal of Chemistry, 2006, 24, 1054-1057.	4.9	22
173	Synthesis of Benzoindolines <i>via</i> a Copperâ€Catalyzed Reaction of 1â€Bromoethynylâ€2â€(cyclopropylidenemethyl)arenes with <i>N</i> â€Allylsulfonamide. Advanced Synthesis and Catalysis, 2012, 354, 3087-3094.	4.3	22
174	Generation of 11â€Fluoroâ€11 <i>H</i> â€indeno[1,2â€ <i>c</i>]quinolines <i>via</i> a Palladiumâ€Catalyzed Threeâ€Component Reaction of 2â€Alkynylbromobenzenes, 2â€Alkynylanilines, and <i>N</i> â€Fluorobenzenesulfonimide. Advanced Synthesis and Catalysis, 2012, 354, 171-178.	4.3	22
175	Silver Triflateâ€Palladium Chloride Cooperative Catalysis in a Tandem Reaction for the Synthesis of <i>H</i> â€Pyrazolo[5,1â€ <i>a</i>]isoquinolines. Advanced Synthesis and Catalysis, 2013, 355, 2321-2326.	4.3	22
176	Deaminative metal-free reaction of alkenylboronic acids, sodium metabisulfite and Katritzky salts. Chemical Communications, 2021, 57, 915-918.	4.1	22
177	Recent Progress in Methyl-Radical-Mediated Methylation or Demethylation Reactions. ACS Catalysis, 2021, 11, 10713-10732.	11.2	22
178	Generation of (<i>E</i>)-β-sulfonyl enamines from sulfur dioxide <i>via</i> a radical process. Organic Chemistry Frontiers, 2021, 8, 1789-1794.	4.5	22
179	Application of pseudovirus system in the development of vaccine, antiviral-drugs, and neutralizing antibodies. Microbiological Research, 2022, 258, 126993.	5.3	22
180	Generation of 4â€Cyanoisoquinolines and 4â€Amidylisoquinolines <i>via</i> a Palladiumâ€Catalyzed Cyanative Reaction of 2â€Alkynylbenzaldimines with Isocyanides. Advanced Synthesis and Catalysis, 2013, 355, 3205-3209.	4.3	21

#	Article	IF	CITATIONS
181	The enlightenments from ITMIG Consensus on WHO histological classification of thymoma and thymic carcinoma: refined definitions, histological criteria, and reporting. Journal of Thoracic Disease, 2016, 8, 738-743.	1.4	21
182	A photoinduced reaction of perfluoroalkyl halides with 1,3-diarylprop-2-yn-1-ones catalyzed by DABSO. Organic Chemistry Frontiers, 2017, 4, 1745-1750.	4.5	21
183	Metal-free synthesis of sulfonylated indolo[2,1- <i>a</i>]isoquinolines from sulfur dioxide. Organic Chemistry Frontiers, 2022, 9, 3521-3526.	4.5	21
184	Assembly of 3-sulfonated 2H-pyrrol-2-ones through the insertion of sulfur dioxide with allenoic amides. Chinese Chemical Letters, 2020, 31, 2996-2998.	9.0	20
185	Deficits of synaptic functions in hippocampal slices prepared from aged mice null α7 nicotinic acetylcholine receptors. Neuroscience Letters, 2014, 570, 97-101.	2.1	19
186	A palladium-catalyzed coupling reaction of aryl nonaflates, sulfur dioxide, and hydrazines. Organic and Biomolecular Chemistry, 2016, 14, 1665-1669.	2.8	19
187	Nitrosoarenes as Nitrogen Source for Generation of Sulfonamides with the Insertion of Sulfur Dioxide under Metalâ€Free Conditions â€. Chinese Journal of Chemistry, 2020, 38, 1098-1102.	4.9	19
188	Photocatalytic three-component radical cascade: a general route to heterocyclic-substituted alkyl sulfones. Organic Chemistry Frontiers, 2021, 8, 5316-5321.	4.5	19
189	Synthesis of γ-amino acids <i>via</i> photocatalyzed intermolecular carboimination of alkenes. Organic Chemistry Frontiers, 2022, 9, 4328-4333.	4.5	19
190	A New Insight into Palladium-Catalyzed Reaction of 2-Alkynylphenol with Carbon Monoxide. Organic Letters, 2011, 13, 5858-5861.	4.6	18
191	Facile assembly of indeno[1,2-c]chromenes via a palladium-catalyzed reaction of 2-alkynylhalobenzene. Organic and Biomolecular Chemistry, 2012, 10, 8244.	2.8	18
192	Generation of diverse isoquinoline N-oxides in an aqueous system. RSC Advances, 2013, 3, 13626.	3.6	18
193	Generation of Indene Derivatives by Tandem Reactions. Synlett, 2014, 25, 2703-2713.	1.8	18
194	A metal-free reaction of sulfur dioxide, cyclopropanols and electron-deficient olefins. Chemical Communications, 2020, 56, 13852-13855.	4.1	18
195	A photocatalytic radical relay reaction of 2-methylthiolated phenylalkynones and potassium metabisulfite. Organic Chemistry Frontiers, 2022, 9, 450-455.	4.5	18
196	Photoredox-catalyzed reaction of thianthrenium salts, sulfur dioxide and hydrazines. Organic Chemistry Frontiers, 2022, 9, 3781-3785.	4.5	18
197	Visible-light-induced remote C(sp ³)–H sulfonylvinylation: assembly of cyanoalkylated vinyl sulfones. Organic Chemistry Frontiers, 2021, 8, 4820-4825.	4.5	17
198	Photoinduced reaction of potassium alkyltrifluoroborates, sulfur dioxide and para-quinone methides via radical 1,6-addition. Chinese Chemical Letters, 2021, 32, 3535-3538.	9.0	17

#	Article	IF	CITATIONS
199	Generation of (<i>Z</i>)-β-alkenyl alkylsulfones <i>via</i> a copper-catalyzed decarboxylative alkylsulfonylation. Organic Chemistry Frontiers, 2020, 7, 4050-4056.	4.5	16
200	S(<scp>vi</scp>) in three-component sulfonamide synthesis: use of sulfuric chloride as a linchpin in palladium-catalyzed Suzuki–Miyaura coupling. Chemical Science, 2021, 12, 6437-6441.	7.4	16
201	FeCl3 atalyzed Azaâ€Diels–Alder Reactions of Methylenecyclopropanes with Imines. Synthetic Communications, 2007, 37, 4425-4437.	2.1	15
202	An unexpected silver triflate-catalyzed reaction of 2-alkynylbenzaldoxime in the presence of benzoyl chloride. RSC Advances, 2013, 3, 10666.	3.6	15
203	A Facile Route to H-Pyrazolo[5,1-a]isoquinolines through a Multicomponent Reaction of 2-Alkynylbenzaldehyde, Sulfonylhydrazine, and Benzyne. Synthesis, 2014, 46, 1362-1366.	2.3	15
204	Route for the Generation of Trifluoromethyl-Substituted Pyrrplo[3,2- <i>c</i>]quinolines. Journal of Organic Chemistry, 2016, 81, 9428-9432.	3.2	15
205	Preparation and electrical conductivity of Langmuir-Blodgett films of poly(3-alkylthiophene)s. Journal of Applied Polymer Science, 1998, 69, 1-6.	2.6	14
206	Palladium-catalyzed three-component reaction of 2-alkynylbromobenzene, 2-alkynylaniline, and electrophile: an efficient pathway for the synthesis of diverse 11H-indeno[1,2-c]quinolines. Organic and Biomolecular Chemistry, 2012, 10, 1969.	2.8	14
207	Synthesis of pyrazolo[5,1-a]isoquinolines via silver(i)–rhodium(i) cooperative catalysis in the reaction of N′-(2-alkynylbenzylidene)hydrazide with cycloprop-2-ene-1,1-dicarboxylate. Organic and Biomolecular Chemistry, 2012, 10, 9447.	2.8	14
208	An unexpected iron(II)-promoted reaction of N-arylprop-2-yn-1-imines with water: Facile assembly of multi-substituted pyrroles. Chinese Chemical Letters, 2021, 32, 37-39.	9.0	14
209	Effects of baicalin cream in two mouse models: 2,4-dinitrofluorobenzene-induced contact hypersensitivity and mouse tail test for psoriasis. International Journal of Clinical and Experimental Medicine, 2015, 8, 2128-37.	1.3	14
210	A copper-catalyzed three-component reaction of alkenes, cycloketone oximes and DABCO·(SO2)2: Direct C(sp2)-H cyanoalkylsulfonylation. Chinese Chemical Letters, 2022, 33, 2383-2386.	9.0	14
211	Access to Sulfoxides under NHC/Photocatalysis via a Radical Pathway. Organic Letters, 2022, 24, 2059-2063.	4.6	14
212	Generation of Tetrahydroâ€3 <i>H</i> â€indeno[2,1â€ <i>d</i>]pyrimidines by the Tandem Reaction of 2â€(2â€Alkynylphenyl)aziridines with 2â€isoÂcyanoacetates. European Journal of Organic Chemistry, 2014, 2014, 767-771.	2.4	13
213	Visible-light Photocatalytic Alkylsulfonylation of Aroylhydrazides with Alkylsulfonyl Radicals. Acta Chimica Sinica, 2022, 80, 11.	1.4	13
214	Recent advances in the reactions of silacyclobutanes and their applications. Organic Chemistry Frontiers, 2022, 9, 2840-2855.	4.5	13
215	Difluoromethylarylation of Alkynes from [Bis(difluoroacetoxy)iodo]benzene: Access to CF ₂ H-Containing Dibenzazepines. Journal of Organic Chemistry, 2022, 87, 7551-7556.	3.2	13
216	Reaction of N′-(2-alkynylbenzylidene)hydrazide with tertiary amine: a concise synthesis of H-pyrazolo[5,1-a]isoquinolines. RSC Advances, 2012, 2, 5961.	3.6	12

#	Article	IF	CITATIONS
217	Facile Assembly of Benzo[<i>b</i>]naphtho[2,3â€ <i>d</i>]azocinâ€6(5 <i>H</i>)â€ones by a Palladiumâ€Ca Double Carbometalation. Chemistry - an Asian Journal, 2016, 11, 1613-1617.	talyzed	12
218	Assembly of Indeno[1,2â€ <i>c</i>]chromenes <i>via</i> a Palladiumâ€Catalyzed Reaction of 1â€Bromoâ€2â€(cyclopropylidenemethyl)benzene with 2â€Alkynylphenol. Advanced Synthesis and Catalysis, 2014, 356, 1072-1078.	4.3	11
219	A palladium-catalyzed tandem reaction of 2-(2-bromobenzylidene)cyclobutanone with 2-alkynylphenol. Chemical Communications, 2015, 51, 16483-16485.	4.1	11
220	Regioselective Radical-Relay Sulfonylation/Cyclization Protocol to Sulfonylated Pyrrolidones under Transition-Metal-Free Conditions. Journal of Organic Chemistry, 2022, 87, 6137-6145.	3.2	11
221	1â€Bromoâ€2â€(cyclopropylidenemethyl)benzene: A Useful Building Block in the Palladiumâ€Catalyzed Reaction of 2â€Alkynylbenzenamine. Chemistry - an Asian Journal, 2012, 7, 1691-1696.	3.3	10
222	A palladium-catalyzed reaction of 2-alkynylbromobenzene with 2-(2-alkynyl)benzenesulfonamide. RSC Advances, 2013, 3, 5779.	3.6	10
223	Synthesis of polycyclic sultams via a palladium-catalyzed reaction of 1-bromo-2-(cyclopropylidenemethyl)benzenes with 2-alkynylbenzenesulfonamides. Organic Chemistry Frontiers, 2017, 4, 14-17.	4.5	10
224	Sulfonylation of Aryl/Alkyl Halides with Sulfur Dioxide under Photoinduced Conditions. Chemistry Letters, 2020, 49, 1066-1070.	1.3	10
225	Kojic acid and maltol: The "Transformers―in organic synthesis. Chinese Chemical Letters, 2020, 31, 2993-2995.	9.0	10
226	A Concise Route to $2\hat{a}\in$ Sulfonylacetonitriles from Sodium Metabisulfite. Advanced Synthesis and Catalysis, 2021, 363, 570-574.	4.3	10
227	Synthesis of γâ€Keto Sulfones through a Three omponent Reaction of Cyclopropanols, DABCO â‹â€‰(SO ₂) ₂ and Alkyl Halides. Advanced Synthesis and Catalysis, 2021 3109-3114.	, 43\$ 3,	10
228	DYRK1A suppression attenuates HIF‑1α accumulation and enhances the anti‑liver cancer effects of regorafenib and sorafenib under hypoxic conditions. International Journal of Oncology, 2022, 60, .	3.3	10
229	Study of electronic and vibronic contributions to cooperative enhancement of two-photon absorption in multibranched structures. New Journal of Chemistry, 2009, 33, 634-640.	2.8	9
230	A Facile Route to Benzo[<i>a</i>]fluorenes <i>via</i> a Palladiumâ€Catalyzed Reaction of 2â€Alkynylbromobenzene with 2â€(2â€Alkynylphenyl)malonate. Advanced Synthesis and Catalysis, 2012, 354, 3071-3077.	4.3	9
231	Generation of Heteroaryl-Substituted Sulfonyl Compounds from Sulfur Dioxide via Remote Heteroaryl ipso-Migration. Journal of Organic Chemistry, 2021, 86, 15177-15184.	3.2	9
232	Investigating isoquinoline derivatives for inhibition of inhibitor of apoptosis proteins for ovarian cancer treatment. Drug Design, Development and Therapy, 2017, Volume 11, 2697-2707.	4.3	8
233	Striving to exploit alkyl electrophiles: challenge and choice in transition metal-catalyzed cross-coupling reactions of sulfones. Organic Chemistry Frontiers, 2018, 5, 2615-2617.	4.5	8
234	Generation of Sulfonylated Tetrazoles through an Iron-Catalyzed Multicomponent Reaction Involving Sulfur Dioxide. IScience, 2020, 23, 101872.	4.1	8

#	Article	IF	CITATIONS
235	Generation of sulfonylureas under photoredox catalysis and their biological evaluations. Chinese Chemical Letters, 2022, 33, 4860-4864.	9.0	8
236	An unexpected three-component reaction of 2-alkylenecyclobutanone and N′-(2-alkynylbenzylidene)hydrazide with water. RSC Advances, 2015, 5, 85225-85228.	3.6	7
237	(E)-β-Trifluoromethyl vinylsulfones as antitumor agents: Synthesis and biological evaluations. European Journal of Medicinal Chemistry, 2022, 232, 114197.	5.5	7
238	Synthesis of β-fluorocarboxylic esters <i>via</i> organophotoredox-catalyzed fluoroalkoxycarbonylation of alkenes in EtOH. Green Chemistry, 2022, 24, 5077-5082.	9.0	7
239	A palladium-catalyzed tandem reaction of 2-alkynylbenzenesulfonamides with 2-(2-bromoarylidene)cyclobutanones. Organic Chemistry Frontiers, 2016, 3, 697-700.	4.5	6
240	Sulfur Dioxide Insertion Reactions. Springer Briefs in Molecular Science, 2017, , 11-77.	0.1	6
241	Harmine reinforces the effects of regorafenib on suppressing cell proliferation and inducing apoptosis in liver cancer cells. Experimental and Therapeutic Medicine, 2022, 23, 209.	1.8	6
242	Stimulator of Interferon Genes in Classical Dendritic Cells Controls Mucosal Th17 Responses to Cyclic Dinucleotides for Host Defenses Against Microbial Infections in Gut. Frontiers in Immunology, 2018, 9, 1085.	4.8	5
243	CBr ₄ : A Useful and Efficient Catalyst for Oneâ€Pot Synthesis of 4â€Substitutedâ€1,4,5,6,7,8â€Hexahydroquinolinâ€5â€ones Via Hantzsch Reaction. Chinese Journal of Chemistry 2007, 25, 1072-1075.	y,4.9	4
244	Synthesis of Bridged Bicyclic Morpholine Amino Acids as Compact Modules for Medicinal Chemistry. Chemistry Letters, 2017, 46, 566-568.	1.3	3
245	In Vitro Hepatic Metabolism of Curcumin Diethyl Disuccinate by Liver S9 from Different Animal Species. Frontiers in Pharmacology, 2020, 11, 577998.	3.5	2
246	The diagnostic value of capsule endoscopy in children with intestinal lymphangiectasia. Revista Espanola De Enfermedades Digestivas, 2021, 113, 765-769.	0.3	2
247	Synthesis and biological evaluation of fluorinated 3,4-dihydroquinolin-2(1H)-ones and 2-oxindoles for anti-hepatic fibrosis. RSC Advances, 2021, 11, 5923-5927.	3.6	1
248	Effects of artemether on the proliferation, apoptosis, and differentiation of keratinocytes: potential application for psoriasis treatment. International Journal of Clinical and Experimental Medicine, 2015, 8, 7069-78.	1.3	1