
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2857539/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Impact of the Bulk Modulus of Diesel Fuels on Fuel Injection Timing. Energy & Fuels, 2004, 18, 1877-1882.	5.1	303
2	An Experimental Investigation of the Origin of Increased NO _x Emissions When Fueling a Heavy-Duty Compression-Ignition Engine with Soy Biodiesel. SAE International Journal of Fuels and Lubricants, 0, 2, 789-816.	0.2	279
3	Impact of fuel formulation on the nanostructure and reactivity of diesel soot. Combustion and Flame, 2012, 159, 3597-3606.	5.2	249
4	Impact of exhaust gas recirculation (EGR) on the oxidative reactivity of diesel engine soot. Combustion and Flame, 2008, 155, 675-695.	5.2	241
5	NOxEmissions of Alternative Diesel Fuels:  A Comparative Analysis of Biodiesel and FT Diesel. Energy & Fuels, 2005, 19, 1484-1492.	5.1	218
6	A surrogate for emulating the physical and chemical properties of conventional jet fuel. Combustion and Flame, 2014, 161, 1489-1498.	5.2	189
7	Impact of Biodiesel on NOxEmissions in a Common Rail Direct Injection Diesel Engine. Energy & Fuels, 2007, 21, 2003-2012.	5.1	151
8	IMPACT OF ALTERNATIVE FUELS ON SOOT PROPERTIES AND DPF REGENERATION. Combustion Science and Technology, 2007, 179, 1991-2037.	2.3	146
9	Group additivity in soot formation for the example of C-5 oxygenated hydrocarbon fuels. Combustion and Flame, 2013, 160, 1484-1498.	5.2	140
10	Evaluation of Raman Parameters Using Visible Raman Microscopy for Soot Oxidative Reactivity. Energy & Fuels, 2013, 27, 1613-1624.	5.1	135
11	Premixed ignition behavior of alternative diesel fuel-relevant compounds in a motored engine experiment. Combustion and Flame, 2007, 149, 112-128.	5.2	134
12	Disease transmission through expiratory aerosols on an urban bus. Physics of Fluids, 2021, 33, 015116.	4.0	119
13	Combustion of Syngas in Internal Combustion Engines. Combustion Science and Technology, 2008, 180, 1193-1206.	2.3	112
14	Impact of engine operating modes and combustion phasing on the reactivity of diesel soot. Combustion and Flame, 2013, 160, 682-691.	5.2	111
15	Premixed ignition behavior of C9 fatty acid esters: A motored engine study. Combustion and Flame, 2009, 156, 1202-1213.	5.2	93
16	Oxidation of 1-butanol and a mixture of n-heptane/1-butanol in a motored engine. Combustion and Flame, 2010, 157, 1816-1824.	5.2	88
17	Behavior of a Diesel Injection System with Biodiesel Fuel. , 0, , .		86
18	Particulate matter indices using fuel smoke point for vehicle emissions with gasoline, ethanol blends, and butanol blends. Combustion and Flame, 2016, 167, 308-319.	5.2	84

#	Article	IF	CITATIONS
19	The deconvolution of the thermal, dilution, and chemical effects of exhaust gas recirculation (EGR) on the reactivity of engine and flame soot. Combustion and Flame, 2011, 158, 1696-1704.	5.2	82
20	Effects of fuel physical properties on direct injection spray and ignition behavior. Fuel, 2016, 180, 481-496.	6.4	72
21	Oxidation chemistry of cyclic hydrocarbons in a motored engine: Methylcyclopentane, tetralin, and decalin. Combustion and Flame, 2010, 157, 495-505.	5.2	62
22	Experimental study of cyclohexane and methylcyclohexane oxidation at low to intermediate temperature in a motored engine. Proceedings of the Combustion Institute, 2009, 32, 419-426.	3.9	56
23	A six-component surrogate for emulating the physical and chemical characteristics of conventional and alternative jet fuels and their blends. Combustion and Flame, 2017, 179, 86-94.	5.2	55
24	Uniqueness in the low temperature oxidation of cycloalkanes. Combustion and Flame, 2010, 157, 2357-2368.	5.2	54
25	Effects of molecular structure on oxidation reactivity of cyclic hydrocarbons: Experimental observations and conformational analysis. Combustion and Flame, 2010, 157, 2369-2379.	5.2	51
26	Experimental study of autoignition characteristics of Jet-A surrogates and their validation in a motored engine and a constant-volume combustion chamber. Fuel, 2016, 184, 565-580.	6.4	48
27	Hydrocarbons for the next generation of jet fuel surrogates. Fuel, 2018, 228, 438-444.	6.4	45
28	Bulk Modulus of Compressibility of Diesel/Biodiesel/HVO Blends. Energy & Fuels, 2012, 26, 1336-1343.	5.1	40
29	Experimental characterization of jet fuels under engine relevant conditions – Part 1: Effect of chemical composition on autoignition of conventional and alternative jet fuels. Fuel, 2019, 239, 1388-1404.	6.4	40
30	Characterization of the Viscosity of Blends of Dimethyl Ether with Various Fuels and Additives. Energy & Fuels, 2003, 17, 1126-1132.	5.1	38
31	Impact of rail pressure and biodiesel fueling on the particulate morphology and soot nanostructures from a common-rail turbocharged direct injection diesel engine. International Journal of Engine Research, 2016, 17, 193-208.	2.3	35
32	Experimental study of the autoignition of C8H16O2 ethyl and methyl esters in a motored engine. Combustion and Flame, 2010, 157, 546-555.	5.2	33
33	lgnition Behavior of Biodiesel and Diesel under Reduced Oxygen Atmospheres. Energy & Fuels, 2015, 29, 6793-6803.	5.1	32
34	Nanostructure and reactivity of soot produced from a turbodiesel engine using post injection. Proceedings of the Combustion Institute, 2019, 37, 1169-1176.	3.9	31
35	Impact of Fuel and Injection Timing on Partially Premixed Charge Compression Ignition Combustion. Energy & Fuels, 2016, 30, 4331-4345.	5.1	30
36	Autoignition of binary fuel blends of n-heptane and C7 esters in a motored engine. Combustion and Flame, 2012, 159, 1619-1630.	5.2	28

#	Article	IF	CITATIONS
37	Impact of branched structures on cycloalkane ignition in a motored engine: Detailed product and conformational analyses. Combustion and Flame, 2015, 162, 877-892.	5.2	28
38	Influence of fuel injection strategies on efficiency and particulate emissions of gasoline and ethanol blends in a turbocharged multi-cylinder direct injection engine. International Journal of Engine Research, 2021, 22, 152-164.	2.3	26
39	Experimental and Numerical Study on Autoignition Characteristics of the Polyoxymethylene Dimethyl Ether/Diesel Blends. Energy & Fuels, 2019, 33, 2538-2546.	5.1	23
40	Impact of Fuel Composition and Intake Pressure on Lean Autoignition of Surrogate Gasoline Fuels in a CFR Engine. Energy & Fuels, 2017, 31, 11315-11327.	5.1	21
41	Autoignition studies of C5 isomers in a motored engine. Proceedings of the Combustion Institute, 2017, 36, 3597-3604.	3.9	21
42	Aerosol generation during chest compression and defibrillation in a swine cardiac arrest model. Resuscitation, 2021, 159, 28-34.	3.0	21
43	Impacts of advanced diesel combustion operation on soot nanostructure and reactivity. International Journal of Engine Research, 2017, 18, 532-542.	2.3	20
44	Effects of the Chemical Structure and Composition of Surrogate Gasoline Fuels on Homogeneous Charge Compression Ignition Combustion in a Single-Cylinder Engine. Energy & Fuels, 2014, 28, 3377-3390.	5.1	18
45	Two-stage ignition behavior and octane sensitivity of toluene reference fuels as gasoline surrogate. Combustion and Flame, 2019, 210, 100-113.	5.2	18
46	The oxidation characteristics of furan derivatives and binary TPGME blends under engine relevant conditions. Proceedings of the Combustion Institute, 2019, 37, 4635-4643.	3.9	18
47	Effects of Fuel Ignition Quality on Critical Equivalence Ratio for Autoignition. Energy & Fuels, 2013, 27, 1586-1600.	5.1	17
48	Autoignition of Alcohol/C7-Esters/ <i>n</i> -Heptane Blends in a Motored Engine under HCCI Conditions. Energy & Fuels, 2017, 31, 2985-2995.	5.1	16
49	Impacts of advanced diesel combustion operation and fuel formulation on soot nanostructure and reactivity. Fuel, 2020, 276, 118080.	6.4	16
50	Experimental Study of Post Injection Scheduling for Soot Reduction in a Light-Duty Turbodiesel Engine. , 0, , .		15
51	Multiple injection for improving knock, gaseous and particulate matter emissions in direct injection SI engines. Applied Energy, 2020, 262, 114578.	10.1	15
52	Combined Impact of Branching and Unsaturation on the Autoignition of Binary Blends in a Motored Engine. Energy & Fuels, 2014, 28, 7203-7215.	5.1	14
53	Experimental and Numerical Study on Autoignition Characteristics of the Gasoline/Diesel/Ethanol and Gasoline/Diesel/PODE/Ethanol Fuels. Energy & Fuels, 2019, 33, 11841-11849.	5.1	14
54	The oxidation of C2-C4 diols and diol/TPGME blends in a motored engine. Fuel, 2019, 257, 116093.	6.4	14

#	Article	IF	CITATIONS
55	The effect of molecular structures of alkylbenzenes on ignition characteristics of binary n-heptane blends. Proceedings of the Combustion Institute, 2019, 37, 4681-4689.	3.9	14
56	Impact of Miller Cycle Strategies on Combustion Characteristics, Emissions and Efficiency in Heavy-Duty Diesel Engines. , 0, , .		14
57	The Relative Importance of Fuel Oxidation Chemistry and Physical Properties to Spray Ignition. SAE International Journal of Fuels and Lubricants, 0, 10, 10-21.	0.2	12
58	Effects of Fuel Composition on Critical Equivalence Ratio for Autoignition. Energy & Fuels, 2013, 27, 1601-1612.	5.1	11
59	Autoignition of pentane isomers in a spark-ignition engine. Proceedings of the Combustion Institute, 2017, 36, 3499-3506.	3.9	11
60	Experimental Study of Autoignition Characteristics of the Ethanol Effect on Biodiesel/n-Heptane Blend in a Motored Engine and a Constant-Volume Combustion Chamber. Energy & Fuels, 2018, 32, 1884-1892.	5.1	11
61	Autoignition characteristics of bio-based fuels, farnesane and TPGME, in comparison with fuels of similar cetane rating. Proceedings of the Combustion Institute, 2021, 38, 5585-5595.	3.9	10
62	Modeling and Predicting Heavy-Duty Vehicle Engine-Out and Tailpipe Nitrogen Oxide (NOx) Emissions Using Deep Learning. Frontiers in Mechanical Engineering, 2022, 8, .	1.8	8
63	Experimental characterization of jet fuels under engine relevant conditions – Part 2: Insights on optimization approach for surrogate formulation. Fuel, 2019, 239, 1405-1416.	6.4	7
64	Experimental Studies of High Efficiency Combustion With Fumigation of Dimethyl Ether and Propane Into Diesel Engine Intake Air. Journal of Engineering for Gas Turbines and Power, 2015, 137, .	1.1	6
65	Influence of intermediate temperature heat release on autoignition reactivity of single-stage ignition fuels with varying octane sensitivity. Proceedings of the Combustion Institute, 2021, 38, 5529-5538.	3.9	5
66	Ignition delay measurements of four component model gasolines exploring the impacts of biofuels and aromatics. Proceedings of the Combustion Institute, 2021, 38, 5549-5555.	3.9	4
67	Extreme Miller cycle with high intake boost for improved efficiency and emissions in heavy-duty diesel engines. International Journal of Engine Research, 2023, 24, 552-566.	2.3	4
68	Experimental Validation of Jet Fuel Surrogates in an Optical Engine. , 0, , .		2
69	Cycle-to-cycle variability in spark-assisted compression ignition engines near optimal mean combustion phasing. International Journal of Engine Research, 2023, 24, 420-436.	2.3	2
70	Uncertainty-based weight determination for surrogate optimization. Combustion and Flame, 2022, 237, 111850.	5.2	2
71	Experimental Measurement of the Isothermal Bulk Modulus of Compressibility and Speed of Sound of Conventional and Alternative Jet Fuels. Energy & Fuels, 2021, 35, 13813-13829.	5.1	1
72	Life-Cycle Greenhouse Gas Emissions Assessment of Novel Dimethyl Ether–Glycerol Blends for Compression-Ignition Engine Application. ACS Sustainable Chemistry and Engineering, 2021, 9, 13196-13205.	6.7	1