Joon-Hyung Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/285746/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of ambient atmosphere on the transfer characteristics and gate-bias stress stability of amorphous indium-gallium-zinc oxide thin-film transistors. Applied Physics Letters, 2010, 96, .	1.5	121
2	Transparent amorphous indium zinc oxide thin-film transistors fabricated at room temperature. Applied Physics Letters, 2007, 90, 022106.	1.5	115
3	Fabrication of p-channel thin-film transistors using CuO active layers deposited at low temperature. Applied Physics Letters, 2010, 97, .	1.5	97
4	Effects of BaTiO3 on dielectric behavior of BaTiO3–Ni–polymethyl methacrylate composites. Applied Physics Letters, 2006, 89, 132910.	1.5	70
5	Electrical, electromechanical and structural studies of lead potassium samarium niobate ceramics. Journal of Alloys and Compounds, 2008, 464, 497-507.	2.8	70
6	Rapid rate sintering of nanocrystalline indium tin oxide ceramics: particle size effect. Materials Letters, 2002, 52, 114-119.	1.3	68
7	Preparation and sintering of nanocrystalline ITO powders with different SnO2 content. Journal of the European Ceramic Society, 2006, 26, 73-80.	2.8	63
8	Effect of synthesis conditions on the properties of LiFePO4 for secondary lithium batteries. Journal of Power Sources, 2006, 159, 237-240.	4.0	60
9	Effect of Bi2O3 content on sintering and crystallization behavior of low-temperature firing Bi2O3–B2O3–SiO2 glasses. Journal of the European Ceramic Society, 2007, 27, 819-824.	2.8	57
10	Folate Ligand Anchored Liquid Crystal Microdroplets Emulsion for <i>in Vitro</i> Detection of KB Cancer Cells. Langmuir, 2014, 30, 10668-10677.	1.6	57
11	Effects of oxygen partial pressure on the preferential orientation and surface morphology of ITO films grown by RF magnetron sputtering. Journal of Electroceramics, 2009, 23, 169-174.	0.8	52
12	Structure and NH3 sensing properties of SnO thin film deposited by RF magnetron sputtering. Sensors and Actuators B: Chemical, 2014, 194, 134-141.	4.0	49
13	High-Voltage, Room-Temperature Liquid Metal Flow Battery Enabled by Na-K K-β″-Alumina Stability. Joule, 2018, 2, 1287-1296.	11.7	48
14	Effect of Phase Transformation on the Densification of Coprecipitated Nanocrystalline Indium Tin Oxide Powders. Journal of the American Ceramic Society, 2002, 85, 2083-2088.	1.9	47
15	Crystallization of indium tin oxide thin films prepared by RF-magnetron sputtering without external heating. Thin Solid Films, 2005, 474, 127-132.	0.8	47
16	Effect of BaO content on the sintering and physical properties of BaO–B2O3–SiO2 glasses. Journal of Non-Crystalline Solids, 2006, 352, 821-826.	1.5	44
17	Dielectric and pyroelectric properties of BSNN ceramics: effect of Ba/Sr ratio and La2O3 addition. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2003, 98, 279-285.	1.7	41
18	Crystal structures, electrical conductivities and electrochemical properties of LiCo1â^'xMgxO2 (0â‰æâ‰ ê .11). Journal of Power Sources, 2006, 159, 233-236.	4.0	41

#	Article	IF	CITATIONS
19	Valence Change of Mn Ions in BaTiO3-Based PTCR Materials. Journal of the American Ceramic Society, 1995, 78, 2845-2848.	1.9	40
20	Characterization of the low temperature firing BaO–B2O3–SiO2 glass: The effect of BaO content. Journal of the European Ceramic Society, 2007, 27, 825-829.	2.8	38
21	Site Occupancy and Dielectric Characteristics of Strontium Barium Niobate Ceramics: Sr/Ba Ratio Dependence. Japanese Journal of Applied Physics, 2002, 41, 7042-7047.	0.8	36
22	Phase development and crystallization of CuAlO2 thin films prepared by pulsed laser deposition. Journal of the European Ceramic Society, 2010, 30, 509-512.	2.8	33
23	Biosensor utilizing a liquid crystal/water interface functionalized with poly(4-cyanobiphenyl-4â€2-oxyundecylacrylate-b-((2-dimethyl amino) ethyl methacrylate)). Colloids and Surfaces B: Biointerfaces, 2014, 121, 400-408.	2.5	33
24	H2S-sensing properties of Cu2O submicron-sized rods and trees synthesized by radio-frequency magnetron sputtering. Sensors and Actuators B: Chemical, 2014, 202, 330-338.	4.0	32
25	Dielectric loss anomaly in Ba(Fe1/2Ta1/2)O3 ceramics. Materials Letters, 2002, 56, 334-338.	1.3	29
26	Densification of nanocrystalline ITO powders in fast firing: effect of specimen mass and sintering atmosphere. Materials Research Bulletin, 2005, 40, 395-404.	2.7	29
27	Pyrochlore–perovskite phase transformation in highly homogeneous (Pb,La)(Zr,Sn,Ti)O3 powders. Journal of Materials Chemistry, 1999, 9, 3107-3111.	6.7	28
28	Microstructure evolution and dielectric properties of Ba5-xNa2xNb10O30 ceramics with different Ba–Na Ratios. Journal of Solid State Electrochemistry, 2006, 10, 18-23.	1.2	28
29	Effects of channel dimensions on performance of a-InGaZnO4 thin-film transistors. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, .	0.6	27
30	Effect of ZnO addition in In2O3 ceramics: defect chemistry and sintering behavior. Solid State Ionics, 2004, 172, 431-434.	1.3	26
31	Real-time liquid crystal-based biosensor for urea detection. Analytical Methods, 2014, 6, 5753-5759.	1.3	26
32	Effects of Zn content on structural and transparent conducting properties of indium-zinc oxide films grown by rf magnetron sputtering. Journal of Vacuum Science & Technology B, 2006, 24, 2737.	1.3	25
33	Sintering behavior of Y-doped ZrO2 ceramics: the effect of Al2O3 and Nb2O5 addition. Solid State lonics, 2004, 172, 413-416.	1.3	24
34	Broadband pH-Sensing Organic Transistors with Polymeric Sensing Layers Featuring Liquid Crystal Microdomains Encapsulated by Di-Block Copolymer Chains. ACS Applied Materials & Interfaces, 2016, 8, 23862-23867.	4.0	24
35	Synthesis, electrical and electromechanical properties of a tungsten-bronze ceramic oxide: Pb0.68K0.64Nb2O6. Physica B: Condensed Matter, 2008, 403, 2079-2087.	1.3	23
36	Effect of oxygen pressure on the p-type conductivity of Ga, P co-doped ZnO thin film grown by pulsed laser deposition. Ceramics International, 2016, 42, 4136-4142.	2.3	22

#	Article	IF	CITATIONS
37	Growth and NO ₂ -Sensing Properties of Biaxial p-SnO/n-ZnO Heterostructured Nanowires. ACS Applied Materials & Interfaces, 2020, 12, 34274-34282.	4.0	22
38	Dielectric loss anomaly of BaBiO3. Journal of Applied Physics, 1999, 86, 6351-6354.	1.1	21
39	Synthesis and Electrical Characterization of the Polymorphic Indium Tin Oxide Nanocrystalline Powders. Journal of the American Ceramic Society, 2006, 89, 3431-3436.	1.9	21
40	Precipitate concentration of Co2SnO4 in CoO-doped SnO2 ceramics at different oxygen chemical potentials. Solid State Ionics, 2001, 144, 321-327.	1.3	20
41	Effect of Ni doping on the structural, electrical, and optical properties of transparent CuCrO2 films grown using pulsed laser deposition. Ceramics International, 2018, 44, 17743-17748.	2.3	20
42	Effect of borate glass additives on the sintering behaviour and dielectric properties of BaTi4O9 ceramics. Journal of the European Ceramic Society, 2006, 26, 2135-2138.	2.8	19
43	Effects of pH and reaction temperature on hydroxyapatite powders synthesized by precipitation. Springer Series in Emerging Cultural Perspectives in Work, Organizational, and Personnel Studies, 2020, 57, 56-64.	1.5	19
44	Transfer characteristics and bias-stress stability of amorphous indium zinc oxide thin-film transistors. Journal of Vacuum Science & Technology B, 2009, 27, 622-625.	1.3	18
45	Phase development procedure of In2O3(ZnO)3 ceramics and its sintering behavior. Solid State Ionics, 2004, 172, 425-429.	1.3	17
46	Effect of Li2O content and sintering temperature on the grain growth and electrical properties of Gd-doped CeO2 ceramics. Ceramics International, 2016, 42, 11170-11176.	2.3	17
47	Reaction-sintering behavior of nanocrystalline indium tin oxide with varying SnO2 content and particle size. Scripta Materialia, 2007, 56, 293-296.	2.6	16
48	Dry etching of zinc-oxide and indium-zinc-oxide in IBr and BI3 plasma chemistries. Applied Surface Science, 2007, 253, 3773-3778.	3.1	16
49	Growth of CuInO2 thin film using highly dense Cu2O–In2O3 composite targets. Thin Solid Films, 2009, 518, 1234-1237.	0.8	16
50	Liquid crystal-based biosensors using a strong polyelectrolyte-containing block copolymer, poly(4-cyanobiphenyl-4â€2-oxyundecylacrylate)-b-poly(sodium styrene sulfonate). Macromolecular Research, 2014, 22, 888-894.	1.0	16
51	lonic conductivity and relaxations of In-doped GDC (gadolinium doped ceria) ceramics. Ceramics International, 2017, 43, 11792-11798.	2.3	16
52	Broadening of dielectric constant by a control of compositional fluctuation in (1–x)PMN-xPT system. Ferroelectrics, 1994, 158, 241-246.	0.3	15
53	Microstructure and dielectric characteristics of tungsten bronze structured SBN70 ceramics: effect of Nb2O5 content. Journal of the European Ceramic Society, 2002, 22, 2107-2113.	2.8	15
54	Sintering behavior and microwave dielectric characteristics of BaO–Sm2O3–4TiO2 ceramics with B2O3 and BaB2O4 addition. Journal of the European Ceramic Society, 2006, 26, 2129-2133.	2.8	15

#	Article	IF	CITATIONS
55	Effect of forming pressure on densification behavior of nanocrystalline ITO powder. Journal of the European Ceramic Society, 2007, 27, 807-812.	2.8	15
56	Specific Intracellular Uptake of Herceptin-Conjugated CdSe/ZnS Quantum Dots into Breast Cancer Cells. BioMed Research International, 2014, 2014, 1-9.	0.9	15
57	Room-temperature NO2 sensor based on a hybrid nanomaterial of methylammonium tin iodide submicron spheres and tin dioxide nanowires. Scripta Materialia, 2020, 188, 107-111.	2.6	15
58	Pressure-Induced Pyrochlore-Perovskite Phase Transformation in PLZST Ceramics. , 2001, 6, 7-12.		14
59	Effect of sintering atmosphere on densification and dielectric characteristics in Sr0.5Ba0.5Nb2O6 ceramics. Journal of the European Ceramic Society, 2004, 24, 1031-1035.	2.8	14
60	Growth and gas sensing properties of methylammonium tin iodide thin film. Scripta Materialia, 2020, 178, 108-113.	2.6	14
61	High-density plasma etching of indium–zinc oxide films in Ar/Cl2 and Ar/CH4/H2 chemistries. Applied Surface Science, 2006, 253, 2752-2757.	3.1	13
62	INFLUENCE OF SAMARIUM SUBSTITUTION ON IMPEDANCE DIELECTRIC AND ELECTROMECHANICAL PROPERTIES OF Pb(1-x)K2xNb2O6. International Journal of Modern Physics B, 2007, 21, 931-945.	1.0	13
63	Effect of structure change on thermal and dielectric characteristics in low-temperature firing Bi2O3–B2O3–ZnO glasses. Journal of Materials Science, 2007, 42, 4260-4264.	1.7	13
64	Optical band gap modulation by Mg-doping in In2O3(ZnO)3 ceramics. Ceramics International, 2012, 38, 6693-6697.	2.3	13
65	Low-temperature sintering and microwave dielectric characteristics of Ba2Ti9O20 ceramics. Journal of the European Ceramic Society, 2006, 26, 2111-2115.	2.8	12
66	Co-doping effect of SnO2 and ZnO in In2O3 ceramics: Change in solubility limit and electrical properties. Solid State Ionics, 2006, 177, 601-605.	1.3	12
67	Dielectric, thermal and sintering behavior of BaO-B2O3-SiO2 glasses with the addition of Al2O3. Journal of Electroceramics, 2006, 17, 359-363.	0.8	12
68	Structural properties of the epitaxial CuCr0.95Mg0.05O2 thin films on c-plane sapphire substrates by pulsed laser deposition. Journal of Crystal Growth, 2011, 326, 9-13.	0.7	12
69	Thermal expansion behavior of La-doped (Ba0.5Sr0.5Co0.8Fe0.2)O3â^î^î cathode material. Ceramics International, 2013, 39, 8267-8271.	2.3	12
70	Effect of a ZnO buffer layer on structural and electrical properties of ZnO:Al,P thin films grown by RF magnetron sputtering. Ceramics International, 2017, 43, 11163-11169.	2.3	12
71	Alternatingâ€Current Electrical Properties of CaMnO ₃ below the Néel Temperature. Journal of the American Ceramic Society, 2000, 83, 797-801.	1.9	11
72	Synthesis of Cs2Tel6 thin film and its NO2 gas-sensing properties under blue-light illumination. Scripta Materialia, 2022, 207, 114305.	2.6	11

#	Article	IF	CITATIONS
73	Effect of Nb2O5 content on dielectric characteristics of tungsten–bronze-structured KLN ceramics. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2003, 99, 483-486.	1.7	10
74	Influence of Pr 2 O 3 and Nd 2 O 3 on Ferroelectric and Pyroelectric Properties of Tungsten Bronze Structured BSNN Ceramics. Ferroelectrics, Letters Section, 2003, 30, 25-39.	0.4	10
75	Phase Transformation Behavior of Nanocrystalline ITO Powders during Heat-Treatment: Oxygen Partial Pressure Effect. Journal of Electroceramics, 2004, 13, 851-855.	0.8	10
76	EFFECTS OF Ni PARTICLE SIZE ON DIELECTRIC PROPERTIES OF PMMA-Ni-BaTiO3 COMPOSITES. Integrated Ferroelectrics, 2007, 87, 85-93.	0.3	10
77	Oxygen nonstoichiometry and electrical properties of La2–xSrxNiO4+δ (0 â‰₿€‰x â‰₿€‰0.5). Jou Ceramic Society, 2020, 57, 416-422.	irnal of the	e Korean
78	Influence of the film properties on the plasma etching dynamics of rf-sputtered indium zinc oxide layers. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2007, 25, 659-665.	0.9	9
79	Origin of Abnormal Grain Growth in Tungsten Bronze Structured Ferroelectric SrxBa1-xNb2O6Ceramics. Japanese Journal of Applied Physics, 2002, 41, 7048-7052.	0.8	8
80	Electrical and electromechanical properties of lead–potassium–yttrium–niobate ceramics—piezoelectric applications. Journal of Physics and Chemistry of Solids, 2009, 70, 1231-1241.	1.9	8
81	Co-doping effect of Zn and Sb in SnO2: Valence stabilization of Sb and expanded solubility limit. Ceramics International, 2011, 37, 2723-2726.	2.3	8
82	Preferential growth orientations of CuCrO2 films grown by pulsed laser deposition. Current Applied Physics, 2012, 12, S123-S126.	1.1	8
83	Phase development and microwave dielectric properties of BaO–xSm2O3–4.5TiO2 (x = 0–1.25) ceramics. Materials Chemistry and Physics, 2003, 79, 282-285.	2.0	7
84	Comparison of plasma chemistries for the dry etching of bulk single-crystal zinc-oxide and rf-sputtered indium–zinc-oxide films. Applied Surface Science, 2007, 253, 9228-9233.	3.1	7
85	Effects of Temperature, Target/Substrate Distance, and Background Pressure on Growth of ZnO Nanorods by Pulsed Laser Deposition. Journal of Nanoscience and Nanotechnology, 2014, 14, 9020-9024.	0.9	7
86	Effects of oxygen partial pressure on the structural and electrical properties of Al and Sb co-doped p-type ZnO thin films grown by pulsed laser deposition. Thin Solid Films, 2020, 708, 138130.	0.8	7
87	Transmission Electron Microscopy Study of 3.2 YSZ Single Crystals Manufactured by the Skull Melting Method. Journal of Nanoscience and Nanotechnology, 2014, 14, 7961-7964.	0.9	6
88	Touch sensors based on planar liquid crystal-gated-organic field-effect transistors. AIP Advances, 2014, 4, 097109.	0.6	6
89	Ultrasensitive tactile sensors based on planar liquid crystal-gated-organic field-effect transistors with polymeric dipole control layers. RSC Advances, 2015, 5, 56904-56907.	1.7	6
90	Physical force-sensitive touch responses in liquid crystal-gated-organic field-effect transistors with polymer dipole control layers. Organic Electronics, 2016, 28, 184-188.	1.4	6

#	Article	IF	CITATIONS
91	Effects of Post-Annealing Treatments on the Transfer Characteristics of Amorphous Indium-Gallium-Zinc Oxide Thin Film Transistors. Journal of Nanoelectronics and Optoelectronics, 2011, 6, 310-314.	0.1	6
92	Characterization of mechanical damage on structural and electrical properties of silicon wafers. Solid-State Electronics, 1999, 43, 2011-2020.	0.8	5
93	Effect of Nb2O5 Content on Microstructure and Dielectric Properties of Ba2-2xNa1-xNb5O15-5x/2 Ceramics. International Journal of Modern Physics B, 2003, 17, 1273-1278.	1.0	5
94	Low temperature processing of indium-tin-zinc oxide channel layers in fabricating thin-film transistors. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, .	0.6	5
95	Characteristics of Sn and Zn co-substituted In2O3 thin films prepared by RF magnetron sputtering. Current Applied Physics, 2012, 12, S89-S93.	1.1	5
96	The aging effect on the low temperature mechanical strength of 3.2YSZ single crystals manufactured by the Skull melting method. Ceramics International, 2013, 39, 2031-2036.	2.3	5
97	Effect of <scp><scp>Ba</scp></scp> Nonstoichiometry in <scp><scp>Ba</scp></scp> _{<i>x</i>} (<scp><scp>Zr</scp>_{0.8}<scp><scp>Yon Population of 5â€Coordinated <i>Y</i>. Journal of the American Ceramic Society, 2014, 97, 3749-3754.</scp></scp></scp>)> 1/9 cp><	<รน _{ี่} ธิ>0.2 รบ</td
98	Effect of Li doping on sintering characteristics and microstructural behavior of yttria-stabilized zirconia. Ceramics International, 2016, 42, 17339-17346.	2.3	5
99	Structural and Electrical Properties of Al and B Co-Doped ZnO Thin Films. Journal of Nanoelectronics and Optoelectronics, 2011, 6, 301-305.	0.1	5
100	Phase Stability of Tungsten-Bronze-Structured KLN Ceramics: Effect of Excess Nb2O5. Journal of Electroceramics, 2004, 13, 847-850.	0.8	4
101	Effect of Ta2O5 Content on Microstructure and Dielectric Properties of Ba2NbNb5(1 - x)Ta5xO15 Ceramic. Integrated Ferroelectrics, 2005, 69, 33-42.	0.3	4
102	MICROSTRUCTURE EVOLUTION AND DIELECTRIC PROPERTIES OF (Ba1â^`xSrx)4Na2Nb10O30 CERAMICS WITH DIFFERENT Ba/Sr RATIOS. Integrated Ferroelectrics, 2005, 74, 61-70.	0.3	4
103	Grain Growth Kinetics of Cobalt-Doped SnO ₂ by Varying Nb ₂ O ₅ Content. Materials Science Forum, 2007, 534-536, 529-532.	0.3	4
104	Growth of CuO nanowires on graphene-deposited Cu foil by thermal oxidation method. Journal of Crystal Growth, 2013, 384, 100-106.	0.7	4
105	Strong addition effect of charge-bridging polymer in polymer:fullerene solar cells with low fullerene content. RSC Advances, 2014, 4, 24914-24921.	1.7	4
106	Fabrication of SnO2 Nanowire Networks on a Spherical Sn Surface by Thermal Oxidation. Journal of Electronic Materials, 2017, 46, 6070-6077.	1.0	4
107	Effect of tin (II and IV) iodide doping on organic–inorganic bismuth (III) iodide perovskite. Materials Letters, 2020, 262, 127166.	1.3	4
108	Structural and Electrical Properties of Al and P Co-Doped ZnO Thin Films Prepared by Pulsed Laser Deposition. Journal of Nanoelectronics and Optoelectronics, 2013, 8, 489-492.	0.1	4

#	Article	IF	CITATIONS
109	Doping of Nitrogen in Li-Al doped ZnO by RF Magnetron Sputtering. Journal of the Korean Physical Society, 2009, 54, 1293-1296.	0.3	4
110	Growth and NO2 sensing properties of Cs2SnI6 thin film. Materials Research Bulletin, 2022, 147, 111628.	2.7	4
111	Evaluation of alumina slurry dispersion by nuclear magnetic resonance relaxation as a comparison to conventional dispersion evaluation methods. Magnetic Resonance in Chemistry, 2022, 60, 877-883.	1.1	4
112	Observation of Intergranular Films in BaB2O4-added BaTiO3 Ceramics. Journal of Materials Research, 2000, 15, 1600-1604.	1.2	3
113	Microstructure and Dielectric Properties of Tungsten Bronze Structured KLN and BNN Ceramics: TiO2 Effect. International Journal of Modern Physics B, 2003, 17, 1267-1272.	1.0	3
114	Electrical Properties of K3Li2Nb5O15 Ceramics with Substitutions of Ba and Sr. Integrated Ferroelectrics, 2005, 69, 21-31.	0.3	3
115	Sintering behaviors and electrical properties of transparent conducting In6Sn2–x ZnxO13–x ceramics with different Sn/Zn ratio. Journal of Electroceramics, 2006, 17, 1057-1061.	0.8	3
116	EFFECT OF YTTRIUM ON DIELECTRIC, PYROELECTRIC AND PIEZOELECTRIC PROPERTIES OF PBN FERROELECTRICS. International Journal of Modern Physics B, 2006, 20, 3081-3091.	1.0	3
117	LEAD BARIUM POTASSIUM SODIUM NIOBATE CERAMICS FOR PIEZOELECTRIC APPLICATIONS. International Journal of Modern Physics B, 2008, 22, 1961-1976.	1.0	3
118	Synthesis of submicron-sized rods and trees of Cu 2 O by radio-frequency magnetron sputtering. Vacuum, 2015, 111, 60-67.	1.6	3
119	Catalyst-Free Patterned Growth of Well-Aligned ZnO Nanowires on ITO Substrates Using an Aqueous Solution Method and Lithography Process. Journal of Nanoelectronics and Optoelectronics, 2010, 5, 186-190.	0.1	3
120	Structural and Electrical Properties of (Al or Ga) and P Co-Doped ZnO Thin Films Prepared by Pulsed Laser Deposition. Journal of Nanoelectronics and Optoelectronics, 2015, 10, 449-454.	0.1	3
121	Structural and Optical Characteristics of Zn-Rich In ₂ 0 ₃ –SnO ₂ –ZnO (ITZO) Thin Films Prepared by Radio Frequency Magnetron Sputtering. Journal of Nanoelectronics and Optoelectronics, 2017, 12, 598-601.	0.1	3
122	Growth of Mg Doped CuCrO ₂ by Pulsed Laser Deposition. Journal of the Korean Institute of Surface Engineering, 2009, 42, 68-72.	0.1	3
123	Electrical and Optical Properties of Amorphous ITZO Deposited at Room Temperature by RF Magnetron Sputtering. Journal of the Korean Institute of Surface Engineering, 2014, 47, 239-243.	0.1	3
124	Evaluation of mechanical damage by high resolution x-ray diffraction and minority carrier recombination lifetime in silicon wafer. Journal of Applied Physics, 1998, 84, 168-173.	1.1	2
125	Densification Behavior and Electrical Properties of K3Li2(Nb1 - xTax)5O15 Ceramics. Integrated Ferroelectrics, 2005, 69, 11-20.	0.3	2
126	Microstructure evolution and dielectric properties of K3Li2Nb5O15 and PbTiO3 composites. Materials Letters, 2006, 60, 3426-3430.	1.3	2

#	Article	IF	CITATIONS
127	Deep etch-induced damage during ion-assisted chemical etching of sputtered indium–zinc–oxide films in Ar/CH4/H2 plasmas. Thin Solid Films, 2008, 516, 2869-2873.	0.8	2
128	SnO2: CuSb2O6 Thin Films Prepared by Pulsed Laser Deposition. Integrated Ferroelectrics, 2010, 115, 34-40.	0.3	2
129	Effect of sintering atmospheres on the densification behavior of CuO ceramics. Ceramics International, 2013, 39, S315-S319.	2.3	2
130	Structural, Optical, and Electrical Properties of p-Type SnO Thin Films Deposited by Reactive RF Magnetron Sputtering. Journal of Nanoelectronics and Optoelectronics, 2012, 7, 475-478.	0.1	2
131	Formation of SnO ₂ Layers on SnO Thin Films and Their CH ₄ Sensing Properties. Journal of Nanoelectronics and Optoelectronics, 2013, 8, 479-483.	0.1	2
132	Microstructural and Electrical Characteristics of Preferential Growth Direction Controlled CuCrO ₂ Thin Films. Journal of Nanoelectronics and Optoelectronics, 2013, 8, 579-583.	0.1	2
133	Effect of Oxygen Plasma Treatment on <i>p</i> -Type Electrical Properties of Amorphous La ₂ NiO _{4+<i>Î</i>} Thin Films. Journal of Nanoelectronics and Optoelectronics, 2015, 10, 475-479.	0.1	2
134	Optoelectronic Characteristics of Devices with Conducting Polymer Layers: A Planar Sensor Approach. Journal of Nanoelectronics and Optoelectronics, 2015, 10, 440-443.	0.1	2
135	Effect of Oxygen Partial Pressure and Sintering Temperature on the Evaporation of Elements during Sintering in In-Sn-Zn-O Transparent Conducting Oxide Systems. Applied Science and Convergence Technology, 2018, 27, 178-183.	0.3	2
136	Influence of Nb 2 O 5 Content on Dielectric Characteristics of Ferroelectric SBN Ceramics. Integrated Ferroelectrics, 2002, 47, 245-257.	0.3	1
137	Chemically Induced Interface Migration in PZT System During Controlling of PbO Content. Integrated Ferroelectrics, 2004, 63, 117-120.	0.3	1
138	Adhesion behavior between yttrium-stabilized zirconia added La0.8Ca0.2Cr0.9Co0.1O3â^`î^ interconnector and yttrium-stabilized zirconia-based substrate. Ceramics International, 2013, 39, 8737-8741.	2.3	1
139	Effect of sintering temperature and P2O5 concentration on the grain shape and grain growth behavior in the ZnO–P2O5 system. Ceramics International, 2014, 40, 10143-10147.	2.3	1
140	SnO ₂ and ZnO Co-Doping Effect in In ₂ O ₃ (ZnO) ₃ Transparent Conducting Ceramics. Journal of Nanoelectronics and Optoelectronics, 2010, 5, 262-266.	0.1	1
141	Effect of SiC Addition on Sintering Behavior and Properties of Indium Tin Oxide. Journal of Nanoelectronics and Optoelectronics, 2012, 7, 559-563.	0.1	1
142	Expanded Solubility and Densification Behavior of Li-Ga Co-Doped ZnO. Journal of Nanoelectronics and Optoelectronics, 2012, 7, 575-579.	0.1	1
143	Transfer Characteristics of a-IGZO Thin Film Transistors Prepared with Different RF Powers. Journal of Nanoelectronics and Optoelectronics, 2015, 10, 520-523.	0.1	1
144	Fabrication Process of Single CuO Nanowire Devices. Applied Science and Convergence Technology, 2014, 23, 134-138.	0.3	1

#	Article	IF	CITATIONS
145	Preparation Of K3LI2NB5O15 (KLN) Thin Films by Rf-Magnetron Sputter Process. Materials Research Society Symposia Proceedings, 1999, 597, 195.	0.1	0
146	Dielectric Characteristics of Ferroelectric Sr 0.7 Ba 0.3 Nb 2 O 6 Ceramics with Different Nb 2 O 5 Content. Ferroelectrics, 2002, 270, 123-128.	0.3	0
147	High Density Inductively Coupled Plasma Etching of Zinc-Oxide(ZnO) and Indium-Zinc Oxide(IZO). ECS Transactions, 2007, 6, 239-247.	0.3	0
148	MICROSTRUCTURE EVOLUTION AND DIELECTRIC PROPERTIES OF K3Li2Nb5O15 and BaTiO3 COMPOSITES. Integrated Ferroelectrics, 2007, 87, 77-84.	0.3	0
149	FERROELECTRIC AND PIEZOELECTRIC PROPERTIES OF Gd3+ AND Y3+ MODIFIED PKN ELECTROCERAMICS. Modern Physics Letters B, 2008, 22, 1515-1523.	1.0	0
150	Low Temperature Growth and Optical Properties of ZnO Nanowires Using an Aqueous Solution Method. Journal of Nanoscience and Nanotechnology, 2012, 12, 1415-1420.	0.9	0
151	Reaction sintering behavior and electrical properties of a Ga-doped ITO system. Ceramics International, 2019, 45, 20678-20683.	2.3	0
152	Phase Development and Electrical Characteristics of <i>n</i> -Type Semiconductive Transparent In ₂ O ₃ (ZnO) ₂ Ceramics with ZnO/SnO ₂ Co-Substitution. Journal of Nanoelectronics and Optoelectronics, 2010, 5, 232-237.	0.1	0
153	UV Photoresponse of Ag-Doped Multiple ZnO Nanowires. Journal of Nanoelectronics and Optoelectronics, 2011, 6, 244-248.	0.1	0
154	Sintering Behavior and Electrical Properties of In2O3 Ceramics with ZnO and Sb2O5 Co-Substitution. Journal of Nanoelectronics and Optoelectronics, 2011, 6, 348-352.	0.1	0
155	Effects of Zn Content on Transfer Characteristics of Indium-Gallium-Zinc Oxide Thin-Film Transistors. Journal of Nanoelectronics and Optoelectronics, 2012, 7, 471-474.	0.1	0
156	Effect of the Sintering Temperature and Atmosphere on the Microstructural Evolution and Shrinkage Behavior of CuO Ceramics. Journal of the Korean Ceramic Society, 2012, 49, 528-534.	1.1	0
157	The Effect of Annealing Treatment on the Electrical Properties of Li-Ga Co-Doped ZnO. Journal of Nanoelectronics and Optoelectronics, 2013, 8, 530-534.	0.1	0
158	Sintering Behavior and Electrochemical Properties of (Gd _O _{.1} Ce _O .3O.1Ce _O .1Ce _O .1Ce _O .1Ce _{.1} Ce _{.1} Ce _{.1} Ce _{.1} .1Ce _{.1} .1<	< >x </td <td>SUB>(Y<si< td=""></si<></td>	SUB>(Y <si< td=""></si<>
159	Study of Dry Etching of SnO thin films using a Inductively Coupled Plasma. Journal of the Korean Institute of Surface Engineering, 2016, 49, 98-103.	0.1	0
160	Fabrication of Nanostructured SnO by Chemical Vapor Transport Process. Applied Science and Convergence Technology, 2018, 27, 140-143.	0.3	0
161	Oxygen Migration Energy in La and Y Co-doped CeO2: Effect of Lattice Constant and Grain Boundary Segregation. Journal of Science: Advanced Materials and Devices, 2022, , 100450.	1.5	0