Rita Meunier-Prest

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/285716/publications.pdf

Version: 2024-02-01

30 papers 617

16 h-index 24 g-index

30 all docs 30 docs citations

30 times ranked

684 citing authors

#	Article	IF	Citations
1	Tuning of interfacial charge transport in polyporphine/phthalocyanine heterojunctions by molecular geometry control for an efficient gas sensor. Chemical Engineering Journal, 2022, 429, 132453.	12.7	23
2	Covalent grafting of aryls to modulate the electrical properties of phthalocyanine-based heterostructures: Application to ammonia sensing. Chemical Engineering Journal, 2022, 436, 135207.	12.7	14
3	Interplay of electrode geometry and bias on charge transport in organic heterojunction gas sensors. Sensors and Actuators B: Chemical, 2022, 369, 132313.	7.8	11
4	Photon assisted-inversion of majority charge carriers in molecular semiconductor-based organic heterojunctions. Journal of Materials Chemistry C, 2021, 9, 5008-5020.	5 . 5	7
5	Series of charge transfer complexes obtained as crystals in a confined environment. CrystEngComm, 2021, 23, 6418-6426.	2.6	1
6	Tuning of organic heterojunction conductivity by the substituents' electronic effects in phthalocyanines for ambipolar gas sensors. Sensors and Actuators B: Chemical, 2021, 332, 129505.	7.8	26
7	Mass Transport in Nanoporous Gold and Correlation with Surface Pores for EC 1 Mechanism: Case of Ascorbic Acid. ChemElectroChem, 2021, 8, 2129-2136.	3.4	3
8	<i>p</i> -Type and <i>n</i> -type conductometric behaviors of octachloro-metallophthalocyanine-based heterojunctions, the key role of the metal. Journal of Porphyrins and Phthalocyanines, 2020, 24, 750-757.	0.8	5
9	Alkylthio-tetrasubstituted ν-Nitrido Diiron Phthalocyanines: Spectroelectrochemistry, Electrical Properties, and Heterojunctions for Ammonia Sensing. Inorganic Chemistry, 2020, 59, 1057-1067.	4.0	11
10	Organic Heterojunction Devices Based on Phthalocyanines: A New Approach to Gas Chemosensing. Sensors, 2020, 20, 4700.	3.8	40
11	Molecular Engineering of Porphyrinâ€√apes/Phthalocyanine Heterojunctions for a Highly Sensitive Ammonia Sensor. Advanced Electronic Materials, 2020, 6, 2000812.	5.1	31
12	Modulating the Electrical Properties of Organic Heterojunction Devices Based On Phthalocyanines for Ambipolar Sensors. ACS Sensors, 2020, 5, 1849-1857.	7.8	31
13	Modulation of the organic heterojunction behavior, from electrografting to enhanced sensing properties. Sensors and Actuators B: Chemical, 2019, 299, 126968.	7.8	22
14	Low Conductive Electrodeposited Poly(2,5-dimethoxyaniline) as a Key Material in a Double Lateral Heterojunction, for Sub-ppm Ammonia Sensing in Humid Atmosphere. ACS Sensors, 2019, 4, 740-747.	7.8	33
15	On the interest of ambipolar materials for gas sensing. Sensors and Actuators B: Chemical, 2018, 258, 657-664.	7.8	20
16	New n-type molecular semiconductor–doped insulator (MSDI) heterojunctions combining a triphenodioxazine (TPDO) and the lutetium bisphthalocyanine (LuPc2) for ammonia sensing. Sensors and Actuators B: Chemical, 2018, 255, 1694-1700.	7.8	21
17	Electrochemical and Spectroelectrochemical Behavior of a Tetracyanotriphenodioxazine in Solution and Thinâ€Films. ChemElectroChem, 2018, 5, 2863-2872.	3.4	O
18	Comprehensive Study of Poly(2,3,5,6-tetrafluoroaniline): From Electrosynthesis to Heterojunctions and Ammonia Sensing. ACS Applied Materials & Samp; Interfaces, 2018, 10, 19974-19986.	8.0	24

#	Article	IF	CITATIONS
19	[60]Fullerene <scp>l</scp> -Amino Acids and Peptides: Synthesis under Phase-Transfer Catalysis Using a Phosphine–Borane Linker. Electrochemical Behavior. Journal of Organic Chemistry, 2017, 82, 11358-11369.	3.2	11
20	Electrochemical detection of the 2-isobutyl-3-methoxypyrazine model odorant based on odorant-binding proteins: The proof of concept. Bioelectrochemistry, 2015, 101, 28-34.	4.6	10
21	Proton Transfer versus Hydrogen Bonding: The Reduction of Ubiquinoneâ€Q ₂ Incorporated in a Selfâ€Assembled Monolayer in Unbuffered Aqueous Solution. ChemElectroChem, 2014, 1, 2116-2123.	3.4	5
22	Electrochemistry of methylene blue at an alkanethiol modified electrode. Electrochimica Acta, 2012, 75, 387-392.	5.2	16
23	Proton coupled electron transfer of ubiquinone Q2 incorporated in a self-assembled monolayer. Physical Chemistry Chemical Physics, 2011, 13, 13327.	2.8	16
24	Potential-assisted deposition of mixed alkanethiol self-assembled monolayers. Electrochimica Acta, 2010, 55, 2712-2720.	5.2	33
25	Electrochemical probe for the monitoring of DNA–protein interactions. Biosensors and Bioelectronics, 2010, 25, 2598-2602.	10.1	25
26	Ferrocenyl glycopeptides as electrochemical probes to detect autoantibodies in multiple sclerosis patients' sera. Biopolymers, 2008, 90, 488-495.	2.4	32
27	Measurements of thickness dispersion in biolayers by scanning force microscopy and comparison with spectroscopic ellipsometry analysis. Ultramicroscopy, 2007, 107, 1111-1117.	1.9	17
28	DNA nanofilm thickness measurement on microarray in air and in liquid using an atomic force microscope. Biosensors and Bioelectronics, 2005, 21, 627-636.	10.1	37
29	Performance of interdigitated nanoelectrodes for electrochemical DNA biosensor. Ultramicroscopy, 2003, 97, 441-449.	1.9	52
30	Direct measurement of the melting temperature of supported DNA by electrochemical method. Nucleic Acids Research, 2003, 31, 150e-150.	14.5	40