Yunteng Qu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2856787/publications.pdf

Version: 2024-02-01

		117571	149623
56	6,841	34	56
papers	citations	h-index	g-index
57	57	57	6880
37	37	37	0000
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms. Nature Catalysis, 2018, 1, 781-786.	16.1	746
2	Review of Metal Catalysts for Oxygen Reduction Reaction: From Nanoscale Engineering to Atomic Design. CheM, 2019, 5, 1486-1511.	5.8	544
3	Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction. Energy and Environmental Science, 2018, 11, 3375-3379.	15.6	528
4	Interfacial Engineering of W ₂ N/WC Heterostructures Derived from Solid‣tate Synthesis: A Highly Efficient Trifunctional Electrocatalyst for ORR, OER, and HER. Advanced Materials, 2020, 32, e1905679.	11.1	380
5	A general synthesis approach for amorphous noble metal nanosheets. Nature Communications, 2019, 10, 4855.	5.8	321
6	Inâ€Situ Thermal Atomization To Convert Supported Nickel Nanoparticles into Surfaceâ€Bound Nickel Singleâ€Atom Catalysts. Angewandte Chemie - International Edition, 2018, 57, 14095-14100.	7.2	310
7	Boosting Oxygen Reduction Catalysis with Fe–N ₄ Sites Decorated Porous Carbons toward Fuel Cells. ACS Catalysis, 2019, 9, 2158-2163.	5. 5	297
8	Trifunctional Selfâ€Supporting Cobaltâ€Embedded Carbon Nanotube Films for ORR, OER, and HER Triggered by Solid Diffusion from Bulk Metal. Advanced Materials, 2019, 31, e1808043.	11.1	290
9	Thermal Emitting Strategy to Synthesize Atomically Dispersed Pt Metal Sites from Bulk Pt Metal. Journal of the American Chemical Society, 2019, 141, 4505-4509.	6.6	285
10	Solid-Diffusion Synthesis of Single-Atom Catalysts Directly from Bulk Metal for Efficient CO2 Reduction. Joule, 2019, 3, 584-594.	11.7	277
11	Directly transforming copper (I) oxide bulk into isolated single-atom copper sites catalyst through gas-transport approach. Nature Communications, 2019, 10, 3734.	5.8	276
12	Stimuliâ€Responsive Manganese Singleâ€Atom Nanozyme for Tumor Therapy via Integrated Cascade Reactions. Angewandte Chemie - International Edition, 2021, 60, 9480-9488.	7.2	271
13	Single Ru Atoms Stabilized by Hybrid Amorphous/Crystalline FeCoNi Layered Double Hydroxide for Ultraefficient Oxygen Evolution. Advanced Energy Materials, 2021, 11, .	10.2	223
14	Biâ€Based Metalâ€Organic Framework Derived Leafy Bismuth Nanosheets for Carbon Dioxide Electroreduction. Advanced Energy Materials, 2020, 10, 2001709.	10.2	210
15	Unraveling the enzyme-like activity of heterogeneous single atom catalyst. Chemical Communications, 2019, 55, 2285-2288.	2.2	205
16	Simultaneous oxidative and reductive reactions in one system by atomic design. Nature Catalysis, 2021, 4, 134-143.	16.1	132
17	Identification of Fenton-like active Cu sites by heteroatom modulation of electronic density. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	132
18	Ambient Synthesis of Singleâ€Atom Catalysts from Bulk Metal via Trapping of Atoms by Surface Dangling Bonds. Advanced Materials, 2019, 31, e1904496.	11.1	114

#	Article	IF	CITATIONS
19	Ultrathin Palladium Nanomesh for Electrocatalysis. Angewandte Chemie - International Edition, 2018, 57, 3435-3438.	7.2	98
20	A hierarchical heterostructure of CdS QDs confined on 3D ZnIn2S4 with boosted charge transfer for photocatalytic CO2 reduction. Nano Research, 2021, 14, 81-90.	5.8	84
21	Coplanar Pt/C Nanomeshes with Ultrastable Oxygen Reduction Performance in Fuel Cells. Angewandte Chemie - International Edition, 2021, 60, 6533-6538.	7.2	73
22	Manipulating Cu Nanoparticle Surface Oxidation States Tunes Catalytic Selectivity toward CH ₄ or C ₂₊ Products in CO ₂ Electroreduction. Advanced Energy Materials, 2021, 11, 2101424.	10.2	71
23	lonic Exchange of Metalâ^'Organic Frameworks for Constructing Unsaturated Copper Singleâ€Atom Catalysts for Boosting Oxygen Reduction Reaction. Small, 2020, 16, e2001384.	5.2	70
24	Single Pt atom-anchored C3N4: A bridging Pt–N bond boosted electron transfer for highly efficient photocatalytic H2 generation. Chemical Engineering Journal, 2021, 412, 128749.	6.6	69
25	Boron, nitrogen co-doped graphene: a superior electrocatalyst support and enhancing mechanism for methanol electrooxidation. Electrochimica Acta, 2016, 212, 313-321.	2.6	60
26	In Situ Topotactic Transformation of an Interstitial Alloy for CO Electroreduction. Advanced Materials, 2020, 32, e2002382.	11.1	56
27	Stimuliâ€Responsive Manganese Singleâ€Atom Nanozyme for Tumor Therapy via Integrated Cascade Reactions. Angewandte Chemie, 2021, 133, 9566-9574.	1.6	50
28	Polyelectrolyte Assisted Synthesis and Enhanced Oxygen Reduction Activity of Pt Nanocrystals with Controllable Shape and Size. ACS Applied Materials & Interfaces, 2014, 6, 14043-14049.	4.0	49
29	Influence of fluoroethylene carbonate as co-solvent on the high-voltage performance of LiNi1/3Co1/3Mn1/3O2 cathode for lithium-ion batteries. Electrochimica Acta, 2016, 191, 8-15.	2.6	45
30	Inâ€Situ Thermal Atomization To Convert Supported Nickel Nanoparticles into Surfaceâ€Bound Nickel Singleâ€Atom Catalysts. Angewandte Chemie, 2018, 130, 14291-14296.	1.6	41
31	Biocompatible Ruthenium Single-Atom Catalyst for Cascade Enzyme-Mimicking Therapy. ACS Applied Materials & Samp; Interfaces, 2021, 13, 45269-45278.	4.0	41
32	Pt–rGO–TiO2 nanocomposite by UV-photoreduction method as promising electrocatalyst for methanol oxidation. International Journal of Hydrogen Energy, 2013, 38, 12310-12317.	3.8	39
33	Engineering the Atomic Layer of RuO ₂ on PdO Nanosheets Boosts Oxygen Evolution Catalysis. ACS Applied Materials & Samp; Interfaces, 2019, 11, 42298-42304.	4.0	38
34	Mild Synthesis of Pt/SnO ₂ /Graphene Nanocomposites with Remarkably Enhanced Ethanol Electroâ€oxidation Activity and Durability. Chemistry - A European Journal, 2016, 22, 193-198.	1.7	36
35	Atomic Filtration by Graphene Oxide Membranes to Access Atomically Dispersed Single Atom Catalysts. ACS Catalysis, 2020, 10, 10468-10475.	5. 5	36
36	2D MOF induced accessible and exclusive Co single sites for an efficient $\langle i \rangle O \langle i \rangle$ -silylation of alcohols with silanes. Chemical Communications, 2019, 55, 6563-6566.	2.2	34

#	Article	IF	Citations
37	Research on the tribological behavior of a nanocrystalline zinc coating prepared by pulse reverse electrodeposition. RSC Advances, 2015, 5, 12025-12033.	1.7	32
38	Construction of highly accessible single Co site catalyst for glucose detection. Science Bulletin, 2020, 65, 2100-2106.	4.3	32
39	Pseudocapacitive Li+ intercalation in ZnO/ZnO@C composites enables high-rate lithium-ion storage and stable cyclability. Ceramics International, 2017, 43, 11998-12004.	2.3	28
40	Interfacial Cladding Engineering Suppresses Atomic Thermal Migration to Fabricate Wellâ€Defined Dualâ€Atom Electrocatalysts. Advanced Functional Materials, 2022, 32, .	7.8	25
41	Ultrathin Palladium Nanomesh for Electrocatalysis. Angewandte Chemie, 2018, 130, 3493-3496.	1.6	24
42	Mild synthesis of layer-by-layer SnO2 nanosheet/Pt/graphene composites as catalysts for ethanol electro-oxidation. International Journal of Hydrogen Energy, 2016, 41, 14036-14046.	3.8	20
43	Atomically Dispersed Pt on Screwâ€like Pd/Au Coreâ€shell Nanowires for Enhanced Electrocatalysis. Chemistry - A European Journal, 2020, 26, 4019-4024.	1.7	19
44	Boosting OER performance of IrO ₂ in acid <i>via</i> urchin-like hierarchical-structure design. Dalton Transactions, 2021, 50, 6083-6087.	1.6	18
45	Quantitative pinhole on-line electrochemical mass spectrometry study on ethanol electro-oxidation at carbon-supported Pt and Ir-containing catalysts. International Journal of Hydrogen Energy, 2017, 42, 228-235.	3.8	17
46	SnS Micro/Nanocrystals with Urchinlike Architectures for Capture of Au(III), Pt(IV), and Pd(II). ACS Applied Nano Materials, 2020, 3, 4102-4113.	2.4	15
47	High-Performance Styrene Epoxidation with Vacancy-Defect Cobalt Single-Atom Catalysts. ACS Applied Materials & Englishment (2018) Materials & Englishment (2018) ACS Applied & Eng	4.0	15
48	Total conversion of centimeter-scale nickel foam into single atom electrocatalysts with highly selective CO2 electrocatalytic reduction in neutral electrolyte. Nano Research, 2023, 16, 2003-2010.	5.8	13
49	Crystalline/amorphous hetero-phase Ru nanoclusters for efficient electrocatalytic oxygen reduction and hydrogen evolution. Materials Chemistry Frontiers, 2021, 5, 6648-6658.	3.2	12
50	Coplanar Pt/C Nanomeshes with Ultrastable Oxygen Reduction Performance in Fuel Cells. Angewandte Chemie, 2021, 133, 6607-6612.	1.6	9
51	Electrocatalytic activity and volatile product selectivity for nitrate reduction at tin-modified Pt(100), Pd(100) and Pd–Pt(100) single crystal electrodes in acidic media. Electrochimica Acta, 2021, 398, 139281.	2.6	9
52	Synthesis of Well-Defined Pt-Based Catalysts for Methanol Oxidation Reaction Based on Electron–Hole Separation Effects. ACS Sustainable Chemistry and Engineering, 2019, 7, 8597-8603.	3.2	7
53	2D PbS Nanosheets with Zigzag Edges for Efficient CO 2 Photoconversion. Chemistry - A European Journal, 2020, 26, 13601-13605.	1.7	6
54	lonic Exchange: Ionic Exchange of Metalâ^'Organic Frameworks for Constructing Unsaturated Copper Singleâ€Atom Catalysts for Boosting Oxygen Reduction Reaction (Small 23/2020). Small, 2020, 16, 2070129.	5. 2	5

ARTICLE IF CITATIONS

Manipulating Cu Nanoparticle Surface Oxidation States Tunes Catalytic Selectivity toward CH₄ or C₂₊ Products in CO₂ Electroreduction (Adv. Energy) Tj ETQq1 1 0.784.214 rg T / Overl

Singleâ€Atom Catalysts: Ambient Synthesis of Singleâ€Atom Catalysts from Bulk Metal via Trapping of Atoms by Surface Dangling Bonds (Adv. Mater. 44/2019). Advanced Materials, 2019, 31, 1970316.