Tadaaki Satou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2856549/publications.pdf

Version: 2024-02-01

331670 395702 1,289 56 21 33 citations h-index g-index papers 57 57 57 1483 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Effects of Inhalation of Essential Oil From <i>Pelargonium graveolens</i> on the Autonomic Nervous System of Awake Mice. Natural Product Communications, 2022, 17, 1934578X2211094.	0.5	O
2	Smell and Stress Response in the Brain: Review of the Connection between Chemistry and Neuropharmacology. Molecules, 2021, 26, 2571.	3.8	20
3	Basic research for active use of fragrances, efficacy and risk of inhaled administration. Journal of Japan Association on Odor Environment, 2021, 52, 105-111.	0.0	1
4	Effects of Inhalation of Geranium Essential Oil on Blood Pressure and Heart Rate in Mice. Natural Product Communications, 2019, 14, 1934578X1988153.	0.5	2
5	Anxiolyticâ€like effects of essential oil from <i>Thymus vulgaris</i> was increased during stress. Flavour and Fragrance Journal, 2018, 33, 191-195.	2.6	8
6	The effect of inhalation of essential oil from <i>Rosmarinus officinalis</i> on scopolamineâ€induced Alzheimer's type dementia model mice. Flavour and Fragrance Journal, 2018, 33, 230-234.	2.6	22
7	Mouse brain concentrations of αâ€pinene, limonene, linalool, and 1,8â€cineole following inhalation. Flavour and Fragrance Journal, 2017, 32, 36-39.	2.6	19
8	Relationship Between Emotional Behavior in Mice and the Concentration of (+)â€Î±â€Santalol in the Brain. Phytotherapy Research, 2015, 29, 1246-1250.	5.8	12
9	Intracerebral Distribution of α-Pinene and the Anxiolytic-like Effect in Mice following Inhaled Administration of Essential Oil from <i>Chamaecyparis Obtusa</i> . Natural Product Communications, 2015, 10, 1934578X1501000.	0.5	10
10	Expression of BDNF and TH mRNA in the Brain Following Inhaled Administration of αâ€Pinene. Phytotherapy Research, 2015, 29, 43-47.	5.8	32
11	Intracerebral Distribution of a-Pinene and the Anxiolytic-like Effect in Mice Following Inhaled Administration of Essential Oil from Chamaecyparis obtuse. Natural Product Communications, 2015, 10, 1479-82.	0.5	10
12	Anxiolyticâ€Like Effect of <i>Illicium verum</i> Fruit Oil, <i>trans</i> â€Anethole and Related Compounds in Mice. Phytotherapy Research, 2014, 28, 1710-1712.	5.8	14
13	Daily Inhalation of αâ€Pinene in Mice: Effects on Behavior and Organ Accumulation. Phytotherapy Research, 2014, 28, 1284-1287.	5.8	50
14	Prolonged anxiolyticâ€like activity of sandalwood (<i>Santalum album</i> L.) oil in stressâ€loaded mice. Flavour and Fragrance Journal, 2014, 29, 35-38.	2.6	10
15	Organ Accumulation in Mice After Inhalation of Single or Mixed Essential Oil Compounds. Phytotherapy Research, 2013, 27, 306-311.	5.8	35
16	Anxiolytic-like effect of Shigyakusan extract with low side effects in mice. Journal of Natural Medicines, 2013, 67, 862-866.	2.3	9
17	Effect of Aromatherapy Massage on Elderly Patients Under Long-Term Hospitalization in Japan. Journal of Alternative and Complementary Medicine, 2013, 19, 235-237.	2.1	5
18	Effect on Emotional Behavior and Stress by Inhalation of the Essential oil from <i>Chamaecyparis obtusa</i> . Natural Product Communications, 2013, 8, 1934578X1300800.	0.5	9

#	Article	IF	CITATIONS
19	Effect on emotional behavior and stress by inhalation of the essential oil from Chamaecyparis obtusa. Natural Product Communications, 2013, 8, 515-8.	0.5	14
20	Differences in the effects of essential oil fromCitrus junosand (+)-limonene on emotional behavior in mice. Journal of Essential Oil Research, 2012, 24, 493-500.	2.7	16
21	The essential oil of Mongolian <i>Nepeta sibirica</i> a single component and its biological activities. Journal of Essential Oil Research, 2012, 24, 555-559.	2.7	15
22	Effects of Inhaled Lavender Essential Oil on Stress-Loaded Animals: Changes in Anxiety-Related Behavior and Expression Levels of Selected mRNAs and Proteins. Natural Product Communications, 2012, 7, 1934578X1200701.	0.5	14
23	Effects of inhaled lavender essential oil on stress-loaded animals: changes in anxiety-related behavior and expression levels of selected mRNAs and proteins. Natural Product Communications, 2012, 7, 1539-44.	0.5	16
24	Interspecies Comparison of Chemical Composition and Anxiolytic-like Effects of Lavender Oils upon Inhalation. Natural Product Communications, 2011, 6, 1934578X1100601.	0.5	20
25	Relationship between duration of exposure and anxiolyticâ€like effects of essential oil from <i>Alpinia zerumbet</i> . Flavour and Fragrance Journal, 2011, 26, 180-185.	2.6	15
26	Anxiolyticâ€like effect of essential oil extracted from <i>Abies sachalinensis</i> . Flavour and Fragrance Journal, 2011, 26, 416-420.	2.6	23
27	Components of Essential Oils Extracted from Leaves and Shoots of <i>Abies</i> Species in Japan. Chemistry and Biodiversity, 2011, 8, 1132-1138.	2.1	2
28	Interspecies comparison of chemical composition and anxiolytic-like effects of lavender oils upon inhalation. Natural Product Communications, 2011, 6, 1769-74.	0.5	21
29	Anxiolytic Effect and Tissue Distribution of Inhaled Alpinia zerumbet Essential Oil in Mice. Natural Product Communications, 2010, 5, 1934578X1000500.	0.5	21
30	Anxiolytic effect and tissue distribution of inhaled Alpinia zerumbet essential oil in mice. Natural Product Communications, 2010, 5, 143-6.	0.5	30
31	Composition and Seasonal Variation of the Essential Oil from Abies Sachalinensis from Hokkaido, Japan. Natural Product Communications, 2009, 4, 1934578X0900400.	0.5	1
32	Composition and seasonal variation of essential oil in Alpinia zerumbet from Okinawa Island. Journal of Natural Medicines, 2009, 63, 204-208.	2.3	39
33	Triterpenoid saponins from Impatiens siculifer. Phytochemistry, 2009, 70, 816-821.	2.9	19
34	Twelve pregnane glycosides from Cynanchum atratum. Steroids, 2009, 74, 198-207.	1.8	29
35	Effects of the essential oil from leaves of Alpinia zerumbet on behavioral alterations in mice. Natural Product Communications, 2009, 4, 129-32.	0.5	21
36	Composition and seasonal variation of the essential oil from Abies sachalinensis from Hokkaido, Japan. Natural Product Communications, 2009, 4, 845-8.	0.5	5

#	Article	IF	CITATIONS
37	The Toxin Produced by Pleurotus ostreatus Reduces the Head Size of Nematodes. Biological and Pharmaceutical Bulletin, 2008, 31, 574-576.	1.4	34
38	Biologically Active Triterpenoid Saponins from Ardisia japonica. Journal of Natural Products, 2007, 70, 179-187.	3.0	61
39	Enhanced antigen-specific primary CD4+ and CD8+ responses by codelivery of ovalbumin and toll-like receptor ligand monophosphoryl lipid A in poly(D,L-lactic-co-glycolic acid) nanoparticles. Journal of Biomedical Materials Research - Part A, 2007, 81A, 652-662.	4.0	103
40	Rhodiolosides A-E, Monoterpene Glycosides from Rhodiola rosea. Chemical and Pharmaceutical Bulletin, 2006, 54, 1229-1233.	1.3	47
41	Platinum-Group Chelate Complexes with 9-Hydroxyphenalenone Derivatives: Synthesis, Structures, Spectroscopic Properties and Cytotoxic Activities. European Journal of Inorganic Chemistry, 2006, 2006, 558-565.	2.0	17
42	The effect of free and polyethylene glycol–liposome-entrapped albendazole on larval mobility and number in Toxocara canis infected mice. Veterinary Parasitology, 2005, 129, 83-87.	1.8	36
43	Cynanosides A–J, ten novel pregnane glycosides from Cynanchum atratum. Tetrahedron, 2005, 61, 5797-5811.	1.9	54
44	Toxocara canis: Search for a potential drug amongst β-carboline alkaloids—in vitro and mouse studies. Experimental Parasitology, 2005, 110, 134-139.	1.2	29
45	Nematocidal quassinoids and bicyclophosphorothionates: a possible common mode of action on the GABA receptor. Pesticide Biochemistry and Physiology, 2005, 81, 176-187.	3.6	15
46	Saponins from the Flower Buds of Buddleja officinalis. Journal of Natural Products, 2004, 67, 10-13.	3.0	36
47	Nematocidal Activity of Isoquinoline Alkaloids Against a Species of Diplogastridae. Planta Medica, 2002, 68, 169-171.	1.3	10
48	Inhibitory Effect of Isoquinoline Alkaloids on Movement of Second-Stage Larvae of Toxocara canis Biological and Pharmaceutical Bulletin, 2002, 25, 1651-1654.	1.4	49
49	Assay of nematocidal activity of isoquinoline alkaloids using third-stage larvae of Strongyloides ratti and S. venezuelensis. Veterinary Parasitology, 2002, 104, 131-138.	1.8	44
50	Nematocidal activities of thiabendazole and ivermectin against the larvae of Strongyloides ratti and S. venezuelensis. Veterinary Parasitology, 2001, 99, 311-322.	1.8	20
51	New apiose-containing triterpenoid saponins from Conyza blinii. Tetrahedron, 2001, 57, 6721-6726.	1.9	31
52	Nematocidal Activity of Quassinoids against a Species of Diplogastridae Biological and Pharmaceutical Bulletin, 2000, 23, 723-726.	1.4	12
53	Steroidal saponins from the bulbs of Lilium candidum. Phytochemistry, 1999, 51, 567-573.	2.9	47
54	Nematocidal Activity of Picrodendrins against a Species of Diplogastridae Biological and Pharmaceutical Bulletin, 1999, 22, 1310-1313.	1.4	13

TADAAKI SATOU

#	Article	lF	CITATIONS
55	A New Subculture and Nematocidal Assay Using a Species of Diplogastridae Chemical and Pharmaceutical Bulletin, 1998, 46, 1261-1264.	1.3	8
56	A pyrroline glucoside ester and steroidal saponins from Lilium martagon. Phytochemistry, 1996, 41, 1225-1230.	2.9	34