Prakash P Kumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2856236/publications.pdf

Version: 2024-02-01

107 6,050 35 74
papers citations h-index g-index

112 112 7137
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Functional characterization and expression profiling of glyoxalase <scp>III</scp> genes in date palm grown under abiotic stresses. Physiologia Plantarum, 2021, 172, 780-794.	2.6	9
2	<scp>WRKY9</scp> transcription factor regulates cytochrome <scp>P450</scp> genes <scp><i>CYP94B3</i></scp> and <scp><i>CYP86B1</i></scp> , leading to increased root suberin and salt tolerance in Arabidopsis. Physiologia Plantarum, 2021, 172, 1673-1687.	2.6	27
3	Ethylene-Mediated Modulation of Bud Phenology, Cold Hardiness, and Hormone Biosynthesis in Peach (Prunus persica). Plants, 2021, 10, 1266.	1.6	14
4	Systems-based rice improvement approaches for sustainable food and nutritional security. Plant Cell Reports, 2021, 40, 2021-2036.	2.8	19
5	Contrasting bloom dates in two apple cultivars linked to differential levels of phytohormones and heat requirements during ecodormancy. Scientia Horticulturae, 2021, 288, 110413.	1.7	8
6	Regulation of AtKUP2 Expression by bHLH and WRKY Transcription Factors Helps to Confer Increased Salt Tolerance to Arabidopsis thaliana Plants. Frontiers in Plant Science, 2020, 11, 1311.	1.7	36
7	Trevor Alleyne Thorpe: His academic life and scientific legacy. In Vitro Cellular and Developmental Biology - Plant, 2020, 56, 728-737.	0.9	2
8	Regulation of a Cytochrome P450 Gene <i>CYP94B1</i> by WRKY33 Transcription Factor Controls Apoplastic Barrier Formation in Roots to Confer Salt Tolerance. Plant Physiology, 2020, 184, 2199-2215.	2.3	61
9	A novel tonoplast Na+/H+ antiporter gene from date palm (PdNHX6) confers enhanced salt tolerance response in Arabidopsis. Plant Cell Reports, 2020, 39, 1079-1093.	2.8	33
10	Genetic structures across a biogeographical barrier reflect dispersal potential of four Southeast Asian mangrove plant species. Journal of Biogeography, 2020, 47, 1258-1271.	1.4	18
11	Systems Metabolic Alteration in a Semi-Dwarf Rice Mutant Induced by OsCYP96B4 Gene Mutation. International Journal of Molecular Sciences, 2020, 21, 1924.	1.8	9
12	An LRR-only protein regulates abscisic acid-mediated abiotic stress responses during Arabidopsis seed germination. Plant Cell Reports, 2020, 39, 909-920.	2.8	11
13	Molecular Characterization of a Date Palm Vascular Highway 1-Interacting Kinase (PdVIK) under Abiotic Stresses. Genes, 2020, 11, 568.	1.0	6
14	Expression of AoNHX1 increases salt tolerance of rice and Arabidopsis, and bHLH transcription factors regulate AtNHX1 and AtNHX6 in Arabidopsis. Plant Cell Reports, 2019, 38, 1299-1315.	2.8	44
15	Regulation of Seed Germination: The Involvement of Multiple Forces Exerted via Gibberellic Acid Signaling. Molecular Plant, 2019, 12, 24-26.	3.9	19
16	<i>Os<scp>TPS</scp>8</i> controls yieldâ€related traits and confers salt stress tolerance in rice by enhancing suberin deposition. New Phytologist, 2019, 221, 1369-1386.	3.5	64
17	The OsPS1-F gene regulates growth and development in rice by modulating photosynthetic electron transport rate. Plant Cell Reports, 2018, 37, 377-385.	2.8	18
18	Proteomics Perspectives in Post-Genomic Era for Producing Salinity Stress-Tolerant Crops. , 2018, , 239-266.		4

#	Article	IF	CITATIONS
19	Regulation of Seed Germination and Abiotic Stresses by Gibberellins and Abscisic Acid. Frontiers in Plant Science, 2018, 9, 838.	1.7	197
20	A Novel RGL2–DOF6 Complex Contributes to Primary Seed Dormancy in Arabidopsis thaliana by Regulating a GATA Transcription Factor. Molecular Plant, 2017, 10, 1307-1320.	3.9	81
21	Transcriptomics analysis of salt stress tolerance in the roots of the mangrove Avicennia officinalis. Scientific Reports, 2017, 7, 10031.	1.6	77
22	Plant hormone-mediated regulation of stress responses. BMC Plant Biology, 2016, 16, 86.	1.6	1,397
23	Species limits, geographical distribution and genetic diversity inJohannesteijsmannia(Arecaceae). Botanical Journal of the Linnean Society, 2016, 182, 318-347.	0.8	9
24	Data in support of the proteomic analysis of plasma membrane and tonoplast from the leaves of mangrove plant Avicennia officinalis. Data in Brief, 2015, 5, 646-652.	0.5	2
25	Proteome profile of salt glandâ€rich epidermis extracted from a saltâ€tolerant tree species. Electrophoresis, 2015, 36, 2473-2481.	1.3	2
26	A Hormone-Responsive C1-Domain-Containing Protein At5g17960 Mediates Stress Response in Arabidopsis thaliana. PLoS ONE, 2015, 10, e0115418.	1.1	13
27	Proteomic Characterisation of the Salt Gland-Enriched Tissues of the Mangrove Tree Species Avicennia officinalis. PLoS ONE, 2015, 10, e0133386.	1.1	17
28	Salt tolerance research in date palm tree (Phoenix dactylifera L.), past, present, and future perspectives. Frontiers in Plant Science, 2015, 6, 348.	1.7	103
29	Destabilization of interaction between cytokinin signaling intermediates <scp>AHP</scp> 1 and <scp>ARR</scp> 4 modulates <i>Arabidopsis</i> development. New Phytologist, 2015, 206, 726-737.	3.5	13
30	A stable JAZ protein from peach mediates the transition from outcrossing to self-pollination. BMC Biology, 2015, 13, 11.	1.7	14
31	RICE RESEARCH TO BREAK YIELD BARRIERS. Cosmos, 2015, 11, 37-54.	0.4	3
32	SHOEBOX Modulates Root Meristem Size in Rice through Dose-Dependent Effects of Gibberellins on Cell Elongation and Proliferation. PLoS Genetics, 2015, 11, e1005464.	1.5	51
33	Identification of salt gland-associated genes and characterization of a dehydrin from the salt secretor mangrove Avicennia officinalis. BMC Plant Biology, 2014, 14, 291.	1.6	26
34	Proteomic analysis of plasma membrane and tonoplast from the leaves of mangrove plant <i>Avicennia officinalis</i> . Proteomics, 2014, 14, 2545-2557.	1.3	17
35	Characterization of gibberellin-signalling elements during plum fruit ontogeny defines the essentiality of gibberellin in fruit development. Plant Molecular Biology, 2014, 84, 399-413.	2.0	25
36	TIR1-like auxin-receptors are involved in the regulation of plum fruit development. Journal of Experimental Botany, 2014, 65, 5205-5215.	2.4	41

3

#	Article	IF	CITATIONS
37	Role of root hydrophobic barriers in salt exclusion of a mangrove plant <scp><i>A</i></scp> <i>vicennia officinalis</i>	2.8	103
38	Remediation of nutrient-rich waters using the terrestrial plant, Pandanus amaryllifolius Roxb Journal of Environmental Sciences, 2014, 26, 404-414.	3.2	12
39	Dynamic secretion changes in the salt glands of the mangrove tree species <i><scp>A</scp>vicennia officinalis</i> in response to a changing saline environment. Plant, Cell and Environment, 2013, 36, 1410-1422.	2.8	71
40	Regulation of biotic and abiotic stress responses by plant hormones. Plant Cell Reports, 2013, 32, 943-943.	2.8	34
41	Plant hormones and their intricate signaling networks: unraveling the nexus. Plant Cell Reports, 2013, 32, 731-732.	2.8	10
42	Population genetic structure of the tropical moss <i>Acanthorrhynchium papillatum</i> as measured with microsatellite markers. Plant Biology, 2013, 15, 384-394.	1.8	10
43	Expression, purification, and characterization of cytokinin signaling intermediates: Arabidopsis histidine phosphotransfer protein 1 (AHP1) and AHP2. Plant Cell Reports, 2013, 32, 795-805.	2.8	4
44	The phytohormone crosstalk paradigm takes center stage in understanding how plants respond to abiotic stresses. Plant Cell Reports, 2013, 32, 945-957.	2.8	218
45	Auxin and gibberellin responsive Arabidopsis SMALL AUXIN UP RNA36 regulates hypocotyl elongation in the light. Plant Cell Reports, 2013, 32, 759-769.	2.8	101
46	Genetic diversity among clumps of Acanthorrhynchium papillatum (Harv.) M. Fleisch. as measured by variation in ITS2 sequences. Journal of Bryology, 2013, 35, 255-265.	0.4	1
47	Identification and Characterization of RcMADS1, an AGL24 Ortholog from the Holoparasitic Plant Rafflesia cantleyi Solms-Laubach (Rafflesiaceae). PLoS ONE, 2013, 8, e67243.	1.1	10
48	Manipulation of plant architecture to enhance lignocellulosic biomass. AoB PLANTS, 2012, 2012, pls026-pls026.	1.2	15
49	<i>STUNTED</i> mediates the control of cell proliferation by GA in <i>Arabidopsis</i> . Development (Cambridge), 2012, 139, 1568-1576.	1.2	41
50	Molecular Genetic Strategies for Enhancing Plant Biomass for Cellulosic Ethanol Production. , 2012, , 237-250.		1
51	A simplified protocol for genetic transformation of switchgrass (Panicum virgatum L.). Plant Cell Reports, 2012, 31, 1923-1931.	2.8	20
52	Insights into the molecular mechanism of RGL2-mediated inhibition of seed germination in Arabidopsis thaliana. BMC Plant Biology, 2012, 12, 179.	1.6	48
53	Plant tissue culture for biotechnology. , 2012, , 131-138.		15
54	Identification of Novel Proteins from the Venom of a Cryptic SnakeDrysdalia coronoidesby a Combined Transcriptomics and Proteomics Approach. Journal of Proteome Research, 2011, 10, 739-750.	1.8	50

#	Article	IF	CITATIONS
55	Prunus domestica Pathogenesis-Related Protein-5 Activates the Defense Response Pathway and Enhances the Resistance to Fungal Infection. PLoS ONE, 2011, 6, e17973.	1.1	87
56	Feeding the extra billions: strategies to improve crops and enhance future food security. Plant Biotechnology Reports, 2011, 5, 107-120.	0.9	24
57	Estimation of nuclear DNA content of various bamboo and rattan species. Plant Biotechnology Reports, 2011, 5, 317-322.	0.9	10
58	The phytohormone signal network regulating elongation growth during shade avoidance. Journal of Experimental Botany, 2010, 61, 2889-2903.	2.4	110
59	Arabidopsis HOG1 gene and its petunia homolog PETCBP act as key regulators of yield parameters. Plant Cell Reports, 2008, 27, 1497-1507.	2.8	21
60	Direct interaction of <i>AGL24</i> and <i>SOC1</i> integrates flowering signals in <i>Arabidopsis</i> Development (Cambridge), 2008, 135, 1481-1491.	1.2	305
61	Change in glass transition temperature upon priming of Impatiens walleriana seeds does not explain their reduced longevity. Seed Science and Technology, 2008, 36, 388-395.	0.6	0
62	βâ€Cardiotoxin: a new threeâ€finger toxin from <i>Ophiophagus hannah</i> (king cobra) venom with betaâ€blocker activity. FASEB Journal, 2007, 21, 3685-3695.	0.2	82
63	Antimicrobial activity of omwaprin, a new member of the waprin family of snake venom proteins. Biochemical Journal, 2007, 402, 93-104.	1.7	134
64	Ohanin, a novel protein from king cobra venom: Its cDNA and genomic organization. Gene, 2006, 371, 246-256.	1.0	32
65	Development of microsatellite markers for the tropical moss, Acanthorrhynchium papillatum. Molecular Ecology Notes, 2006, 6, 396-398.	1.7	8
66	Floral organ identity genes in the orchidDendrobium crumenatum. Plant Journal, 2006, 46, 54-68.	2.8	132
67	Characterization of two ethylene receptors PhERS1 and PhETR2 from petunia: PhETR2 regulates timing of anther dehiscence. Journal of Experimental Botany, 2006, 58, 533-544.	2.4	28
68	Random amplified polymorphic DNA analysis of the moth orchids, Phalaenopsis (Epidendroideae:) Tj ETQq0 0 C) rgBT /Over	lock 10 Tf 50
69	Ohanin, a Novel Protein from King Cobra Venom, Induces Hypolocomotion and Hyperalgesia in Mice. Journal of Biological Chemistry, 2005, 280, 13137-13147.	1.6	85
70	Floral homeotic genes are targets of gibberellin signaling in flower development. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7827-7832.	3.3	249
71	Floral induction in tissue culture: a system for the analysis of LEAFY-dependent gene regulation. Plant Journal, 2004, 39, 273-282.	2.8	45
72	Heterologous expression of Arabidopsis ERS1 causes delayed senescence in coriander. Plant Cell Reports, 2004, 22, 678-683.	2.8	11

#	Article	IF	Citations
73	Conservation of class C function of floral organ development during 300 million years of evolution from gymnosperms to angiosperms. Plant Journal, 2004, 37, 566-577.	2.8	115
74	Post-transcriptional gene silencing in plants by RNA. Plant Cell Reports, 2003, 22, 167-174.	2.8	36
75	Rice HMGB1 protein recognizes DNA structures and bends DNA efficiently. Archives of Biochemistry and Biophysics, 2003, 411, 105-111.	1.4	52
76	Cloning and characterization of rice HMGB1 gene. Gene, 2003, 312, 103-109.	1.0	33
77	Cytosine methylation occurs in a CDC48 homologue and a MADS-box gene during adventitious shoot induction in Petunia leaf explants1. Journal of Experimental Botany, 2003, 54, 1361-1371.	2.4	11
78	Mechanisms of seed ageing under different storage conditions for Vigna radiata (L.) Wilczek: lipid peroxidation, sugar hydrolysis, Maillard reactions and their relationship to glass state transition. Journal of Experimental Botany, 2003, 54, 1057-1067.	2.4	191
79	AGAMOUS-LIKE 24, a dosage-dependent mediator of the flowering signals. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 16336-16341.	3.3	249
80	Cloning and characterization of Fortune-1, a novel gene with enhanced expression in male reproductive organs of Cycas edentata. Mechanisms of Development, 2002, 114, 149-152.	1.7	3
81	Non-enzymatic protein modification by the Maillard reaction reduces the activities of scavenging enzymes inVigna radiata. Physiologia Plantarum, 2002, 115, 213-220.	2.6	30
82	PkMADS1is a novel MADS box gene regulating adventitious shoot induction and vegetative shoot development inPaulownia kawakamii. Plant Journal, 2002, 29, 141-151.	2.8	60
83	î» Exonuclease-Based Subtractive Hybridization Approach to Isolate Differentially Expressed Genes from Leaf Cultures of Paulownia kawakamii. Analytical Biochemistry, 2001, 295, 240-247.	1.1	5
84	The expression of Brostm, a KNOTTED1-like gene, marks the cell type and timing of in vitro shoot induction in Brassica oleracea. Plant Molecular Biology, 2001, 46, 567-580.	2.0	20
85	Effect of varying co2 and light levels on growth of hedyotis and sugarcane shoot cultures. In Vitro Cellular and Developmental Biology - Plant, 2000, 36, 118-124.	0.9	4
86	Seed Surface Architecture and Random Amplified Polymorphic DNA Profiles of Paulownia fortunei, P. tomentosa and their Hybrid. Annals of Botany, 1999, 83, 103-107.	1.4	9
87	Regulation of morphogenesis in plant tissue culture by ethylene. In Vitro Cellular and Developmental Biology - Plant, 1998, 34, 94-103.	0.9	78
88	Genetic Analyses of Heliconia Species and Cultivars with Randomly Amplified Polymorphic DNA (RAPD) Markers. Journal of the American Society for Horticultural Science, 1998, 123, 91-97.	0.5	23
89	Title is missing!. Plant Cell, Tissue and Organ Culture, 1997, 48, 37-44.	1.2	11
90	Title is missing!. Plant Cell, Tissue and Organ Culture, 1997, 50, 75-82.	1.2	6

#	Article	IF	CITATIONS
91	Direct shoot formation and plant regeneration from cotyledon explants of rapid-cycling Brassica rapa. In Vitro Cellular and Developmental Biology - Plant, 1997, 33, 288-292.	0.9	20
92	High frequency adventitious shoot regeneration from excised leaves of Paulownia spp. cultured in vitro. Plant Cell Reports, 1996, 16, 204-209.	2.8	39
93	Oxidative stress in Agrobacterium-induced tumors on Kalanchoe plants. Plant Journal, 1996, 10, 545-551.	2.8	10
94	Involvement of ethylene on growth and plant regeneration in callus cultures of Heliconia psittacorum L.f Plant Growth Regulation, 1996, 19, 145-151.	1.8	8
95	Ethylene and CO2 affect direct shoot regeneration from the petiolar ends of Paulownia kawakamii leaves cultured in vitro. Plant Growth Regulation, 1996, 20, 237-243.	1.8	10
96	High frequency adventitious shoot regeneration from excised leaves of Paulownia spp. cultured in vitro. Plant Cell Reports, 1996 , 16 , 204 - 209 .	2.8	3
97	Role of ethylene in the production of sporophytes from Platycerium coronarium (Koenig) desv. frond and rhizome pieces cultured in Vitro. Journal of Plant Growth Regulation, 1995, 14, 183-189.	2.8	16
98	Direct organogenesis and induction of morphogenic callus through thin section culture of Heliconia psittacorum. Scientia Horticulturae, 1995, 62, 113-120.	1.7	25
99	High frequency plant regeneration from excised leaves of Paulownia fortunei. In Vitro Cellular and Developmental Biology - Plant, 1993, 29, 72-76.	0.9	12
100	High frequency plant regeneration in Heliconia psittacorum L.f Plant Science, 1993, 90, 63-71.	1.7	4
101	Cellular control of morphogenesis. Forestry Sciences, 1993, , 11-29.	0.4	8
102	A setup for incubating plant cultures under continuous flow of gases. In Vitro Cellular and Developmental Biology - Plant, 1991, 27, 43-44.	0.9	2
103	Long-term storage of somatic embryogenic white spruce tissue at ambient temperature. Plant Cell, Tissue and Organ Culture, 1991, 25, 53-60.	1.2	22
104	Ethylene and Carbon Dioxide Accumulation, and Growth of Cell Suspension Cultures of Picea glauca (White Spruce). Journal of Plant Physiology, 1990, 135, 592-596.	1.6	52
105	Putrescine metabolism in excised cotyledons of Pinus radiata cultured in vitro. Physiologia Plantarum, 1989, 76, 521-526.	2.6	35
106	Activities of Ribulose Bisphosphate Carboxylase and Phosphoenolpyruvate Carboxylase and 14C-Bicarbonate Fixation during in Vitro Culture of Pinus radiata Cotyledons. Plant Physiology, 1988, 87, 675-679.	2.3	35
107	The role of ethylene and carbon dioxide in differentiation of shoot buds in excised cotyledons of Pinus radiata in vitro. Physiologia Plantarum, 1987, 69, 244-252.	2.6	105