Sergi Valverde

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2856199/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Assessment of automatic decision-support systems for detecting active T2 lesions in multiple sclerosis patients. Multiple Sclerosis Journal, 2022, 28, 1209-1218.	3.0	4
2	Generating Longitudinal Atrophy Evaluation Datasets on Brain Magnetic Resonance Images Using Convolutional Neural Networks and Segmentation Priors. Neuroinformatics, 2021, 19, 477-492.	2.8	5
3	Transductive Transfer Learning for Domain Adaptation in Brain Magnetic Resonance Image Segmentation. Frontiers in Neuroscience, 2021, 15, 608808.	2.8	5
4	Assessing the Accuracy and Reproducibility of <scp>PARIETAL</scp> : A Deep Learning Brain Extraction Algorithm. Journal of Magnetic Resonance Imaging, 2021, , .	3.4	7
5	A fully convolutional neural network for new T2-w lesion detection in multiple sclerosis. NeuroImage: Clinical, 2020, 25, 102149.	2.7	40
6	Acute and sub-acute stroke lesion segmentation from multimodal MRI. Computer Methods and Programs in Biomedicine, 2020, 194, 105521.	4.7	35
7	Quantitative Analysis of Patch-Based Fully Convolutional Neural Networks for Tissue Segmentation on Brain Magnetic Resonance Imaging. IEEE Access, 2019, 7, 89986-90002.	4.2	28
8	Acute ischemic stroke lesion core segmentation in CT perfusion images using fully convolutional neural networks. Computers in Biology and Medicine, 2019, 115, 103487.	7.0	69
9	Supervised Domain Adaptation for Automatic Sub-cortical Brain Structure Segmentation with Minimal User Interaction. Scientific Reports, 2019, 9, 6742.	3.3	36
10	Multiple Sclerosis Lesion Synthesis in MRI Using an Encoder-Decoder U-NET. IEEE Access, 2019, 7, 25171-25184.	4.2	46
11	Deep convolutional neural networks for brain image analysis on magnetic resonance imaging: a review. Artificial Intelligence in Medicine, 2019, 95, 64-81.	6.5	257
12	One-shot domain adaptation in multiple sclerosis lesion segmentation using convolutional neural networks. NeuroImage: Clinical, 2019, 21, 101638.	2.7	91
13	A supervised framework with intensity subtraction and deformation field features for the detection of new T2-w lesions in multiple sclerosis. NeuroImage: Clinical, 2018, 17, 607-615.	2.7	39
14	Objective Evaluation of Multiple Sclerosis Lesion Segmentation using a Data Management and Processing Infrastructure. Scientific Reports, 2018, 8, 13650.	3.3	171
15	Automated sub-cortical brain structure segmentation combining spatial and deep convolutional features. Medical Image Analysis, 2018, 48, 177-186.	11.6	90
16	Improving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional neural network approach. NeuroImage, 2017, 155, 159-168.	4.2	287
17	Evaluating the effect of multiple sclerosis lesions on automatic brain structure segmentation. NeuroImage: Clinical, 2017, 15, 228-238.	2.7	19
18	Automated tissue segmentation of MR brain images in the presence of white matter lesions. Medical Image Analysis, 2017, 35, 446-457.	11.6	55

Sergi Valverde

#	Article	IF	CITATIONS
19	Automated Detection of Lupus White Matter Lesions in MRI. Frontiers in Neuroinformatics, 2016, 10, 33.	2.5	18
20	An SPM12 extension for multiple sclerosis lesion segmentation. , 2016, , .		2
21	A review on brain structures segmentation in magnetic resonance imaging. Artificial Intelligence in Medicine, 2016, 73, 45-69.	6.5	101
22	Quantifying brain tissue volume in multiple sclerosis with automated lesion segmentation and filling. NeuroImage: Clinical, 2015, 9, 640-647.	2.7	31
23	A toolbox for multiple sclerosis lesion segmentation. Neuroradiology, 2015, 57, 1031-1043.	2.2	76
24	Comparison of 10 brain tissue segmentation methods using revisited IBSR annotations. Journal of Magnetic Resonance Imaging, 2015, 41, 93-101.	3.4	76
25	BOOST: A supervised approach for multiple sclerosis lesion segmentation. Journal of Neuroscience Methods, 2014, 237, 108-117.	2.5	28
26	Intensity Based Methods for Brain MRI Longitudinal Registration. A Study on Multiple Sclerosis Patients. Neuroinformatics, 2014, 12, 365-379.	2.8	13
27	A white matter lesion-filling approach to improve brain tissue volume measurements. NeuroImage: Clinical, 2014, 6, 86-92.	2.7	55