Tania Romacho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2856025/publications.pdf

Version: 2024-02-01

40 papers 1,959 citations

304368 22 h-index 454577 30 g-index

44 all docs 44 docs citations

times ranked

44

4047 citing authors

#	Article	IF	CITATIONS
1	Positive allosteric γâ€aminobutyric acid type A receptor modulation prevents lipotoxicityâ€induced injury in hepatocytes <i>in vitro</i> . Diabetes, Obesity and Metabolism, 2022, 24, 1498-1508.	2.2	2
2	DPP4 Promotes Human Endothelial Cell Senescence and Dysfunction via the PAR2–COX-2–TP Axis and NLRP3 Inflammasome Activation. Hypertension, 2022, 79, 1361-1373.	1.3	14
3	Obesity, A Condition That Mimics Premature Aging. , 2021, , 501-521.		2
4	Cannabinoid Receptors in Metabolic Regulation and Diabetes. Physiology, 2021, 36, 102-113.	1.6	11
5	Inter-Organ Crosstalk in the Development of Obesity-Associated Insulin Resistance. Handbook of Experimental Pharmacology, 2021, , 1.	0.9	O
6	DPP4 deletion in adipose tissue improves hepatic insulin sensitivity in diet-induced obesity. American Journal of Physiology - Endocrinology and Metabolism, 2020, 318, E590-E599.	1.8	25
7	DPP4 and ACE2 in Diabetes and COVID-19: Therapeutic Targets for Cardiovascular Complications?. Frontiers in Pharmacology, 2020, 11, 1161.	1.6	80
8	Visfatin/eNampt induces endothelial dysfunction in vivo: a role for Toll-Like Receptor 4 and NLRP3 inflammasome. Scientific Reports, 2020, 10, 5386.	1.6	69
9	The angiotensinâ€(1â€₹)/Mas receptor axis protects from endothelial cell senescence via klotho and Nrf2 activation. Aging Cell, 2019, 18, e12913.	3.0	80
10	Angiotensin-(1-7) attenuates endothelial cell senescence via klotho and Nrf2 activation. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO2-3-8.	0.0	0
11	The adipokine visfatin produces murine endothelial dysfunction in vivo and ex vivo: opportunities for pharmacological interventions. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, OR10-3.	0.0	O
12	THE PENTOSE PHOSPHATE PATHWAY IS A KEY FACTOR IN HIGH GLUCOSE- ASSOCIATED VASCULAR DAMAGE. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO2-7-18.	0.0	0
13	The Angiotensin-(1-7)/Mas Axis Counteracts Angiotensin II-Dependent and -Independent Pro-inflammatory Signaling in Human Vascular Smooth Muscle Cells. Frontiers in Pharmacology, 2016, 7, 482.	1.6	32
14	Soluble dipeptidyl peptidase-4 induces microvascular endothelial dysfunction through proteinase-activated receptor-2 and thromboxane A2 release. Journal of Hypertension, 2016, 34, 869-876.	0.3	40
15	Inflammation, glucose, and vascular cell damage: the role of the pentose phosphate pathway. Cardiovascular Diabetology, 2016, 15, 82.	2.7	84
16	Eicosapentaenoic acid and arachidonic acid differentially regulate adipogenesis, acquisition of a brite phenotype and mitochondrial function in primary human adipocytes. Molecular Nutrition and Food Research, 2016, 60, 2065-2075.	1.5	56
17	Protease-Activated Receptor 2 Promotes Pro-Atherogenic Effects through Transactivation of the VEGF Receptor 2 in Human Vascular Smooth Muscle Cells. Frontiers in Pharmacology, 2016, 7, 497.	1.6	10
18	Nutritional Ingredients Modulate Adipokine Secretion and Inflammation in Human Primary Adipocytes. Nutrients, 2015, 7, 865-886.	1.7	30

#	Article	IF	CITATIONS
19	The interleukin-1 receptor antagonist anakinra improves endothelial dysfunction in streptozotocin-induced diabetic rats. Cardiovascular Diabetology, 2014, 13, 158.	2.7	93
20	The angiotensin (1-7)/MAS receptor axis and vascular cell inflammation. Atherosclerosis, 2014, 235, e268-e269.	0.4	0
21	Soluble DPP4 induces inflammation and proliferation of human smooth muscle cells via protease-activated receptor 2. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 1613-1621.	1.8	116
22	Adipose tissue and its role in organ crosstalk. Acta Physiologica, 2014, 210, 733-753.	1.8	214
23	BMP4 and BMP7 induce the white-to-brown transition of primary human adipose stem cells. American Journal of Physiology - Cell Physiology, 2014, 306, C431-C440.	2.1	141
24	Visfatin/Nampt induces telomere damage and senescence in human endothelial cells. International Journal of Cardiology, 2014, 175, 573-575.	0.8	14
25	The adipokine visfatin/nampt induces premature senescence and telomere damage in human endothelial cells. Atherosclerosis, 2014, 235, e15.	0.4	0
26	Adipose Tissue Dysfunction and Inflammation in Cardiovascular Disease. Frontiers of Hormone Research, 2014, 43, 79-92.	1.0	31
27	Abstract 065: Soluble Dipeptidyl Peptidase-4 Induces Endothelial Dysfunction by the Release of Vasoconstrictor Prostanoids: Protective Effect of Dipeptidyl Peptidase Inhibitors. Hypertension, 2014, 64, .	1.3	0
28	Abstract 560: Inflammation Converts Glucose Into A Deleterious Agent In Human Aortic Smooth Muscle Cells. Hypertension, 2014, 64, .	1.3	0
29	Visfatin/Nampt: An Adipokine with Cardiovascular Impact. Mediators of Inflammation, 2013, 2013, 1-15.	1.4	147
30	Visfatin as a Novel Mediator Released by Inflamed Human Endothelial Cells. PLoS ONE, 2013, 8, e78283.	1.1	46
31	Evidence against a Beneficial Effect of Irisin in Humans. PLoS ONE, 2013, 8, e73680.	1.1	261
32	Evidence against a beneficial effect of irisin in humans. Experimental and Clinical Endocrinology and Diabetes, 2013, 121, .	0.6	0
33	Inflammation enhances visfatin synthesis in the vascular wall. Experimental and Clinical Endocrinology and Diabetes, 2013, 121, .	0.6	0
34	Inhibition of vascular endothelial growth factor (VEGF)-induced endothelial proliferation, arterial relaxation, vascular permeability and angiogenesis by dobesilate. European Journal of Pharmacology, 2011, 667, 153-159.	1.7	56
35	Pathways Responsible for Apoptosis Resulting from Amadori-Induced Oxidative and Nitrosative Stress in Human Mesothelial Cells. American Journal of Nephrology, 2011, 34, 104-114.	1.4	6
36	Visfatin Impairs Endothelium-Dependent Relaxation in Rat and Human Mesenteric Microvessels through Nicotinamide Phosphoribosyltransferase Activity. PLoS ONE, 2011, 6, e27299.	1.1	56

3

#	Article	IF	CITATION
37	Visfatin/PBEF/Nampt: A New Cardiovascular Target?. Frontiers in Pharmacology, 2010, 1, 135.	1.6	28
38	Inflammation Determines the Pro-Adhesive Properties of High Extracellular D-Glucose in Human Endothelial Cells In Vitro and Rat Microvessels In Vivo. PLoS ONE, 2010, 5, e10091.	1.1	58
39	Extracellular PBEF/NAMPT/visfatin activates pro-inflammatory signalling in human vascular smooth muscle cells through nicotinamide phosphoribosyltransferase activity. Diabetologia, 2009, 52, 2455-2463.	2.9	128
40	The deleterious effect of high concentrations of D-glucose requires pro-inflammatory preconditioning. Journal of Hypertension, 2008, 26, 478-485.	0.3	26