Estela Area-Gomez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2855742/publications.pdf

Version: 2024-02-01

51 3,770 29 48 papers citations h-index g-index

54 54 54 5129
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Upregulated function of mitochondria-associated ER membranes in Alzheimer disease. EMBO Journal, 2012, 31, 4106-4123.	7.8	497
2	\hat{l}_{\pm} -Synuclein Is Localized to Mitochondria-Associated ER Membranes. Journal of Neuroscience, 2014, 34, 249-259.	3.6	420
3	Presenilins Are Enriched in Endoplasmic Reticulum Membranes Associated with Mitochondria. American Journal of Pathology, 2009, 175, 1810-1816.	3.8	328
4	Mitochondria-associated ER membranes in Alzheimer disease. Molecular and Cellular Neurosciences, 2013, 55, 26-36.	2.2	223
5	Increased localization of <scp>APP</scp> 99 in mitochondriaâ€associated <scp>ER</scp> membranes causes mitochondrial dysfunction in Alzheimer disease. EMBO Journal, 2017, 36, 3356-3371.	7.8	164
6	A key role for MAM in mediating mitochondrial dysfunction in Alzheimer disease. Cell Death and Disease, 2018, 9, 335.	6.3	158
7	ApoE4 upregulates the activity of mitochondriaâ€associated ER membranes. EMBO Reports, 2016, 17, 27-36.	4.5	119
8	3D structure of the influenza virus polymerase complex: Localization of subunit domains. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 308-313.	7.1	116
9	On the Pathogenesis of Alzheimer's Disease: The MAM Hypothesis. FASEB Journal, 2017, 31, 864-867.	0.5	112
10	Mitochondria, OxPhos, and neurodegeneration: cells are not just running out of gas. Journal of Clinical Investigation, 2019, 129, 34-45.	8.2	109
11	Mitochondria-associated ER membranes and Alzheimer disease. Current Opinion in Genetics and Development, 2016, 38, 90-96.	3.3	94
12	Treatment of CoQ10 Deficient Fibroblasts with Ubiquinone, CoQ Analogs, and Vitamin C: Time- and Compound-Dependent Effects. PLoS ONE, 2010, 5, e11897.	2.5	92
13	Mitochondrial DNA depletion syndrome due to mutations in the RRM2B gene. Neuromuscular Disorders, 2008, 18, 453-459.	0.6	87
14	Threeâ€dimensional reconstruction of a recombinant influenza virus ribonucleoprotein particle. EMBO Reports, 2001, 2, 313-317.	4. 5	85
15	A $<$ i $><$ scp $>$ POGLUT $<$ /scp $>$ 1 $<$ /i $>mutation$ causes a muscular dystrophy with reduced Notch signaling and satellite cell loss. EMBO Molecular Medicine, 2016, 8, 1289-1309.	6.9	84
16	Is Alzheimer's Disease a Disorder of Mitochondria-Associated Membranes?. Journal of Alzheimer's Disease, 2010, 20, S281-S292.	2.6	80
17	MFN2 mutations in Charcot–Marie–Tooth disease alter mitochondria-associated ER membrane function but do not impair bioenergetics. Human Molecular Genetics, 2019, 28, 1782-1800.	2.9	72
18	ATAD3 controls mitochondrial cristae structure, influencing mtDNA replication and cholesterol levels in muscle. Journal of Cell Science, 2018, 131, .	2.0	68

#	Article	IF	Citations
19	The Alzheimer's diseaseâ€associated C99 fragment of APP regulates cellular cholesterol trafficking. EMBO Journal, 2020, 39, e103791.	7.8	65
20	A new role for αâ€synuclein in Parkinson's disease: Alteration of ER–mitochondrial communication. Movement Disorders, 2015, 30, 1026-1033.	3.9	59
21	Dual PPARÎ \pm /Î 3 activation inhibitsSIRT1-PGC1Î \pm axis and causes cardiac dysfunction. JCI Insight, 2019, 4, .	5.0	56
22	Decreased surfactant lipids correlate with lung function in chronic obstructive pulmonary disease (COPD). PLoS ONE, 2020, 15, e0228279.	2.5	52
23	Novel subcellular localization for α-synuclein: possible functional consequences. Frontiers in Neuroanatomy, 2015, 9, 17.	1.7	45
24	Ribosome-associated vesicles: A dynamic subcompartment of the endoplasmic reticulum in secretory cells. Science Advances, 2020, 6, eaay9572.	10.3	42
25	Oligomerization of the influenza virus polymerase complex in vivo. Journal of General Virology, 2008, 89, 520-524.	2.9	40
26	PPARγ deacetylation dissociates thiazolidinedione's metabolic benefits from its adverse effects. Journal of Clinical Investigation, 2018, 128, 2600-2612.	8.2	40
27	Mitochondrial Genetics and Disease. Journal of Child Neurology, 2014, 29, 1208-1215.	1.4	36
28	Assessing the Function of Mitochondria-Associated ER Membranes. Methods in Enzymology, 2014, 547, 181-197.	1.0	35
29	CoQ10 supplementation rescues nephrotic syndrome through normalization of H2S oxidation pathway. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 3708-3722.	3.8	35
30	APOE4 is Associated with Differential Regional Vulnerability to Bioenergetic Deficits in Aged APOE Mice. Scientific Reports, 2020, 10, 4277.	3.3	34
31	Stasimon/Tmem41b localizes to mitochondria-associated ER membranes and is essential for mouse embryonic development. Biochemical and Biophysical Research Communications, 2018, 506, 463-470.	2.1	31
32	Onset and organ specificity of Tk2 deficiency depends on Tk1 down-regulation and transcriptional compensation. Human Molecular Genetics, 2011, 20, 155-164.	2.9	30
33	Lipidomic traits of plasma and cerebrospinal fluid in amyotrophic lateral sclerosis correlate with disease progression. Brain Communications, 2021, 3, fcab143.	3.3	29
34	Lipidomics study of plasma from patients suggest that ALS and PLS are part of a continuum of motor neuron disorders. Scientific Reports, 2021, 11, 13562.	3.3	28
35	Tyrosine hydroxylase deficiency in three Greek patients with a common ancestral mutation. Movement Disorders, 2010, 25, 1086-1090.	3.9	22
36	ATPâ€binding cassette transporters and sterol <i>O</i> â€acyltransferases interact at membrane microdomains to modulate sterol uptake and esterification. FASEB Journal, 2015, 29, 4682-4694.	0.5	21

#	Article	IF	Citations
37	Alzheimer Disease. Advances in Experimental Medicine and Biology, 2017, 997, 149-156.	1.6	21
38	Effects of APOE4 allelic dosage on lipidomic signatures in the entorhinal cortex of aged mice. Translational Psychiatry, 2022, 12, 129.	4.8	21
39	The silence of the fats: A MAM's story about Alzheimer. Neurobiology of Disease, 2020, 145, 105062.	4.4	18
40	The fat brain. Current Opinion in Clinical Nutrition and Metabolic Care, 2020, 23, 68-75.	2.5	17
41	Reduced ER–mitochondria connectivity promotes neuroblastoma multidrug resistance. EMBO Journal, 2022, 41, e108272.	7.8	16
42	MAM and C99, key players in the pathogenesis of Alzheimer's disease. International Review of Neurobiology, 2020, 154, 235-278.	2.0	12
43	Isolation of mitochondria-associated ER membranes. Methods in Cell Biology, 2020, 155, 33-44.	1.1	12
44	Ethanol Induces Extracellular Vesicle Secretion by Altering Lipid Metabolism through the Mitochondria-Associated ER Membranes and Sphingomyelinases. International Journal of Molecular Sciences, 2021, 22, 8438.	4.1	12
45	Analysis of phospholipid synthesis in mitochondria. Methods in Cell Biology, 2020, 155, 321-335.	1.1	11
46	Lipidomics Prediction of Parkinson's Disease Severity: A Machine-Learning Analysis. Journal of Parkinson's Disease, 2021, 11, 1141-1155.	2.8	11
47	STIM1 Deficiency Leads to Specific Down-Regulation of ITPR3 in SH-SY5Y Cells. International Journal of Molecular Sciences, 2020, 21, 6598.	4.1	8
48	Lipid level alteration in human and cellular models of alpha synuclein mutations. Npj Parkinson's Disease, 2022, 8, 52.	5. 3	3
49	[F3–06–03]: MECHANISMS OF MAM DYSFUNCTION IN ALZHEIMER's DISEASE AND OTHER NEURODEGENERATIVE DISEASES. Alzheimer's and Dementia, 2017, 13, P887.	0.8	0
50	The C99 fragment of APP regulates cholesterol trafficking. Alzheimer's and Dementia, 2020, 16, e038479.	0.8	0
51	Lipidome changes due to accumulation of cholesterol via APP 99 alters neuronal permeability. Alzheimer's and Dementia, 2021, 17, e051164.	0.8	0