Maryse L Lebrun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2855670/publications.pdf

Version: 2024-02-01

114418 126858 4,441 66 33 63 citations g-index h-index papers 69 69 69 4903 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Rhoptry secretion system structure and priming in Plasmodium falciparum revealed using in situ cryo-electron tomography. Nature Microbiology, 2022, 7, 1230-1238.	5.9	17
2	An Alveolata secretory machinery adapted to parasite host cell invasion. Nature Microbiology, 2021, 6, 425-434.	5.9	53
3	P18 (SRS35/TgSAG4) Plays a Role in the Invasion and Virulence of Toxoplasma gondii. Frontiers in Immunology, 2021, 12, 643292.	2.2	1
4	Unraveling the Elusive Rhoptry Exocytic Mechanism of Apicomplexa. Trends in Parasitology, 2021, 37, 622-637.	1.5	16
5	In situ ultrastructures of two evolutionarily distant apicomplexan rhoptry secretion systems. Nature Communications, 2021, 12, 4983.	5. 8	42
6	TgZFP2 is a novel zinc finger protein involved in coordinating mitosis and budding in Toxoplasma. Cellular Microbiology, 2020, 22, e13120.	1.1	5
7	A Toxoplasma gondii patatin-like phospholipase contributes to host cell invasion. PLoS Pathogens, 2020, 16, e1008650.	2.1	12
8	Toxoplasma secretory proteins and their roles in parasite cell cycle and infection., 2020,, 607-704.		5
9	Assessing Rhoptry Secretion in T. gondii. Methods in Molecular Biology, 2020, 2071, 143-155.	0.4	5
10	A lipid-binding protein mediates rhoptry discharge and invasion in Plasmodium falciparum and Toxoplasma gondii parasites. Nature Communications, 2019, 10, 4041.	5.8	47
11	Phosphoinositides and their functions in apicomplexan parasites. International Journal for Parasitology, 2018, 48, 493-504.	1.3	15
12	Toxoplasma gondii chromosomal passenger complex is essential for the organization of a functional mitotic spindle: a prerequisite for productive endodyogeny. Cellular and Molecular Life Sciences, 2018, 75, 4417-4443.	2.4	20
13	A proteomic analysis unravels novel CORVET and HOPS proteins involved in <i>Toxoplasma gondii</i> secretory organelles biogenesis. Cellular Microbiology, 2018, 20, e12870.	1.1	22
14	<i>Toxoplasma gondii</i> autophagy-related protein ATG9 is crucial for the survival of parasites in their host. Cellular Microbiology, 2017, 19, e12712.	1.1	22
15	Efficient invasion by Toxoplasma depends on the subversion of host protein networks. Nature Microbiology, 2017, 2, 1358-1366.	5.9	54
16	Editorial overview: Host–microbe interactions: parasites. Current Opinion in Microbiology, 2017, 40, viii-xi.	2.3	1
17	RON4L1 is a new member of the moving junction complex in Toxoplasma gondii. Scientific Reports, 2017, 7, 17907.	1.6	16
18	Gliding motility powers invasion and egress in Apicomplexa. Nature Reviews Microbiology, 2017, 15, 645-660.	13.6	291

#	Article	IF	CITATIONS
19	Shelph2, a bacterial-like phosphatase of the malaria parasite Plasmodium falciparum, is dispensable during asexual blood stage. PLoS ONE, 2017, 12, e0187073.	1.1	7
20	Characterization of Toxoplasma DegP, a rhoptry serine protease crucial for lethal infection in mice. PLoS ONE, 2017, 12, e0189556.	1.1	10
21	Stability of the Plasmodium falciparum AMA1-RON2 Complex Is Governed by the Domain II (DII) Loop. PLoS ONE, 2016, 11, e0144764.	1.1	17
22	Identification of Novel O-Linked Glycosylated Toxoplasma Proteins by Vicia villosa Lectin Chromatography. PLoS ONE, 2016, 11, e0150561.	1.1	26
23	The conserved apicomplexan Aurora kinase TgArk3 is involved in endodyogeny, duplication rate and parasite virulence. Cellular Microbiology, 2016, 18, 1106-1120.	1.1	33
24	Identification of Toxoplasma TgPH1, a pleckstrin homology domain-containing protein that binds to the phosphoinositide PI(3,5)P 2. Molecular and Biochemical Parasitology, 2016, 207, 39-44.	0.5	7
25	Dissecting the interface between apicomplexan parasite and host cell: Insights from a divergent AMA–RON2 pair. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 398-403.	3.3	33
26	Distinct contribution of <scp><i>T</i></scp> <i>oxoplasma gondii</i> rhomboid proteases 4 and 5 to micronemal protein protease 1 activity during invasion. Molecular Microbiology, 2015, 97, 244-262.	1.2	43
27	<i>Toxoplasma gondii</i> Vps11, a subunit of <scp>HOPS</scp> and <scp>CORVET</scp> tethering complexes, is essential for the biogenesis of secretory organelles. Cellular Microbiology, 2015, 17, 1157-1178.	1.1	44
28	Identification and characterization of <i>Toxoplasma</i> â€SIP, a conserved apicomplexan cytoskeleton protein involved in maintaining the shape, motility and virulence of the parasite. Cellular Microbiology, 2015, 17, 62-78.	1.1	29
29	Computational and biophysical approaches to protein–protein interaction inhibition of Plasmodium falciparum AMA1/RON2 complex. Journal of Computer-Aided Molecular Design, 2015, 29, 525-539.	1.3	16
30	Malaria Sporozoites Traverse Host Cells within Transient Vacuoles. Cell Host and Microbe, 2015, 18, 593-603.	5.1	119
31	Lipid kinases are essential for apicoplast homeostasis in <i>Toxoplasma gondii</i> . Cellular Microbiology, 2015, 17, 559-578.	1.1	36
32	Toxoplasma Secretory Proteins and Their Roles in Cell Invasion and Intracellular Survival., 2014,, 389-453.		20
33	The <i>Toxoplasma gondii</i> calcium-dependent protein kinase 7 is involved in early steps of parasite division and is crucial for parasite survival. Cellular Microbiology, 2014, 16, 95-114.	1.1	82
34	Plasticity and redundancy among AMA–RON pairs ensure host cell entry of Toxoplasma parasites. Nature Communications, 2014, 5, 4098.	5.8	138
35	Babesia divergensandNeospora caninumapical membrane antigen 1 structures reveal selectivity and plasticity in apicomplexan parasite host cell invasion. Protein Science, 2013, 22, 114-127.	3.1	35
36	Regulation of ATG8 membrane association by ATG4 in the parasitic protist <i>Toxoplasma gondii</i> Autophagy, 2013, 9, 1334-1348.	4.3	55

#	Article	IF	Citations
37	Structural and Functional Insights into the Malaria Parasite Moving Junction Complex. PLoS Pathogens, 2012, 8, e1002755.	2.1	116
38	Virulence factors of Toxoplasma gondii. Microbes and Infection, 2012, 14, 1403-1410.	1.0	58
39	Molecular Dissection of Novel Trafficking and Processing of the ⟨i⟩⟨scp⟩T⟨/scp⟩oxoplasma gondii⟨/i⟩ Rhoptry Metalloprotease Toxolysinâ€1. Traffic, 2012, 13, 292-304.	1.3	47
40	Identification of a New Rhoptry Neck Complex RON9/RON10 in the Apicomplexa Parasite Toxoplasma gondii. PLoS ONE, 2012, 7, e32457.	1.1	18
41	Host Cell Invasion by Apicomplexan Parasites: Insights from the Co-Structure of AMA1 with a RON2 Peptide. Science, 2011, 333, 463-467.	6.0	168
42	The moving junction of apicomplexan parasites: a key structure for invasion. Cellular Microbiology, 2011, 13, 797-805.	1.1	262
43	Phosphatidylinositol 3-Monophosphate Is Involved in Toxoplasma Apicoplast Biogenesis. PLoS Pathogens, 2011, 7, e1001286.	2.1	71
44	The RON2-AMA1 Interaction is a Critical Step in Moving Junction-Dependent Invasion by Apicomplexan Parasites. PLoS Pathogens, 2011, 7, e1001276.	2.1	264
45	Mic1-3 Knockout <i>Toxoplasma gondii</i> is a good candidate for a vaccine against <i>T. gondii</i> ii>induced abortion in sheep. Veterinary Research, 2010, 41, 49.	1.1	45
46	Export of a Toxoplasma gondii Rhoptry Neck Protein Complex at the Host Cell Membrane to Form the Moving Junction during Invasion. PLoS Pathogens, 2009, 5, e1000309.	2.1	262
47	ROP2 from Toxoplasma gondii: A Virulence Factor with a Protein-Kinase Fold and No Enzymatic Activity. Structure, 2009, 17, 139-146.	1.6	76
48	A Dynamin Is Required for the Biogenesis of Secretory Organelles in Toxoplasma gondii. Current Biology, 2009, 19, 277-286.	1.8	124
49	Mic1-3KO tachyzoite a live attenuated vaccine candidate against toxoplasmosis derived from a type I strain shows features of type II strain. Experimental Parasitology, 2009, 123, 111-117.	0.5	8
50	GRA12, a Toxoplasma dense granule protein associated with the intravacuolar membranous nanotubular network. International Journal for Parasitology, 2009, 39, 299-306.	1.3	56
51	Apicomplexan cytoskeleton and motors: Key regulators in morphogenesis, cell division, transport and motility. International Journal for Parasitology, 2009, 39, 153-162.	1.3	50
52	Further analysis of protection induced by the MIC3 DNA vaccine against T. gondii: CD4 and CD8 T cells are the major effectors of the MIC3 DNA vaccine-induced protection, both Lectin-like and EGF-like domains of MIC3 conferred protection. Vaccine, 2009, 27, 2959-2966.	1.7	23
53	<i>Toxoplasma gondii</i> Hsp20 is a stripeâ€arranged chaperoneâ€like protein associated with the outer leaflet of the inner membrane complex. Biology of the Cell, 2008, 100, 479-489.	0.7	32
54	Molecular Signals in the Trafficking of <i>Toxoplasma gondii</i> Protein MIC3 to the Micronemes. Eukaryotic Cell, 2008, 7, 1019-1028.	3.4	45

#	Article	IF	CITATIONS
55	Lipidomic analysis of <i>Toxoplasma gondii</i> tachyzoites rhoptries: further insights into the role of cholesterol. Biochemical Journal, 2008, 415, 87-96.	1.7	41
56	ROP18 Is a Rhoptry Kinase Controlling the Intracellular Proliferation of Toxoplasma gondii. PLoS Pathogens, 2007, 3, e14.	2.1	171
57	Inverted topology of the Toxoplasma gondii ROP5 rhoptry protein provides new insights into the association of the ROP2 protein family with the parasitophorous vacuole membrane. Cellular Microbiology, 2007, 9, 54-64.	1.1	70
58	The ROP2 family of Toxoplasma gondii rhoptry proteins: Proteomic and genomic characterization and molecular modeling. Proteomics, 2006, 6, 5773-5784.	1.3	131
59	Characterization, biosynthesis and fate of ROP7, a ROP2 related rhoptry protein of Toxoplasma gondiiâ [†] . Molecular and Biochemical Parasitology, 2006, 146, 98-100.	0.5	28
60	Mic1â€3 Knockout ofToxoplasma gondiils a Successful Vaccine against Chronic and Congenital Toxoplasmosis in Mice. Journal of Infectious Diseases, 2006, 194, 1176-1183.	1.9	48
61	The rhoptry neck protein RON4 relocalizes at the moving junction during Toxoplasma gondii invasion. Cellular Microbiology, 2005, 7, 1823-1833.	1.1	193
62	Synergistic role of micronemal proteins in Toxoplasma gondii virulence. Journal of Experimental Medicine, 2005, 201, 453-463.	4.2	156
63	The Toxoplasma gondii protein MIC3 requires pro-peptide cleavage and dimerization to function as adhesin. EMBO Journal, 2002, 21, 2526-2536.	3.5	72
64	Microneme proteins: structural and functional requirements to promote adhesion and invasion by the apicomplexan parasite Toxoplasma gondii. International Journal for Parasitology, 2001, 31, 1293-1302.	1.3	199
65	The microneme protein MIC3 of Toxoplasma gondii is a secretory adhesin that binds to both the surface of the host cells and the surface of the parasite. Cellular Microbiology, 2000, 2, 353-364.	1.1	116
66	Internalin must be on the bacterial surface to mediate entry of Listeria monocytogenes into epithelial cells. Molecular Microbiology, 1996, 21, 579-592.	1.2	90