Yuanqiang Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2855622/publications.pdf Version: 2024-02-01

YHANOLANG SUN

#	Article	IF	CITATIONS
1	Synthesis of Luminescent Carbon Dots with Ultrahigh Quantum Yield and Inherent Folate Receptor-Positive Cancer Cell Targetability. Scientific Reports, 2018, 8, 1086.	3.3	215
2	Farâ€Red to Nearâ€Infrared Carbon Dots: Preparation and Applications in Biotechnology. Small, 2019, 15, e1901507.	10.0	169
3	Hydrogen-Bond-Induced Emission of Carbon Dots for Wash-Free Nucleus Imaging. Analytical Chemistry, 2019, 91, 9259-9265.	6.5	113
4	Retrosynthesis of Tunable Fluorescent Carbon Dots for Precise Longâ€Term Mitochondrial Tracking. Small, 2019, 15, e1901517.	10.0	103
5	Lysosome-targeted carbon dots for ratiometric imaging of formaldehyde in living cells. Nanoscale, 2019, 11, 8458-8463.	5.6	102
6	Fluorescent Carbon Dots for in Situ Monitoring of Lysosomal ATP Levels. Analytical Chemistry, 2020, 92, 7940-7946.	6.5	82
7	One Stone, Three Birds: pH Triggered Transformation of Aminopyronine and Iminopyronine Based Lysosome Targeting Viscosity Probe for Cancer Visualization. Analytical Chemistry, 2021, 93, 1786-1791.	6.5	77
8	Silver-Catalyzed Radical Cascade Cyclization toward 1,5-/1,3-Dicarbonyl Heterocycles: An Atom-/Step-Economical Strategy Leading to Chromenopyridines and Isoxazole-/Pyrazole-Containing Chroman-4-Ones. Organic Letters, 2018, 20, 6157-6160.	4.6	75
9	Rational Design of Far-Red to Near-Infrared Emitting Carbon Dots for Ultrafast Lysosomal Polarity Imaging. ACS Applied Materials & Interfaces, 2020, 12, 31738-31744.	8.0	71
10	Silver-catalyzed decarboxylative cascade radical cyclization of <i>tert</i> -carboxylic acids and <i>o</i> -(allyloxy)arylaldehydes towards chroman-4-one derivatives. Organic Chemistry Frontiers, 2018, 5, 2925-2929.	4.5	70
11	One-Pot Green Synthesis of Ultrabright N-Doped Fluorescent Silicon Nanoparticles for Cellular Imaging by Using Ethylenediaminetetraacetic Acid Disodium Salt as an Effective Reductant. ACS Applied Materials & Interfaces, 2018, 10, 27979-27986.	8.0	65
12	High performance fluorescence biosensing of cysteine in human serum with superior specificity based on carbon dots and cobalt-derived recognition. Sensors and Actuators B: Chemical, 2019, 280, 62-68.	7.8	56
13	Simultaneous Detection of Human Serum Albumin and Sulfur Dioxide in Living Cells Based on a Catalyzed Michael Addition Reaction. Analytical Chemistry, 2020, 92, 16130-16137.	6.5	51
14	Mechanisms for carbon dots-based chemosensing, biosensing, and bioimaging: A review. Analytica Chimica Acta, 2022, 1209, 338885.	5.4	47
15	Recent progress in carbon-dots-based nanozymes for chemosensing and biomedical applications. Chinese Chemical Letters, 2021, 32, 2994-3006.	9.0	46
16	Carbon–Dipyrromethenes: Bright Cationic Fluorescent Dyes and Potential Application in Revealing Cellular Trafficking of Mitochondrial Glutathione Conjugates. Journal of the American Chemical Society, 2020, 142, 17069-17078.	13.7	44
17	High-fidelity carbon dots polarity probes: revealing the heterogeneity of lipids in oncology. Light: Science and Applications, 2022, 11, .	16.6	39
18	SciFinder-guided rational design of fluorescent carbon dots for ratiometric monitoring intracellular pH fluctuations under heat shock. Chinese Chemical Letters, 2019, 30, 1647-1651.	9.0	37

YUANQIANG SUN

#	Article	IF	CITATIONS
19	Intrinsic lysosomal targeting fluorescent carbon dots with ultrastability for long-term lysosome imaging. Journal of Materials Chemistry B, 2020, 8, 736-742.	5.8	36
20	A Multiheteroatom [3,3]-Sigmatropic Rearrangement: Disproportionative Entries into 2-(<i>N</i> -Heteroaryl)methyl Phosphates and α-Keto Phosphates. Organic Letters, 2017, 19, 5864-5867.	4.6	34
21	Spying on the Polarity Dynamics during Wound Healing of Zebrafish by Using Rationally Designed Carbon Dots. Advanced Healthcare Materials, 2021, 10, e2002268.	7.6	34
22	A wash-free lysosome targeting carbon dots for ultrafast imaging and monitoring cell apoptosis status. Analytica Chimica Acta, 2020, 1106, 207-215.	5.4	33
23	Quantitative Structure–Activity Relationship Enables the Rational Design of Lipid Droplet-Targeting Carbon Dots for Visualizing Bisphenol A-Induced Nonalcoholic Fatty Liver Disease-like Changes. ACS Applied Materials & Interfaces, 2021, 13, 44086-44095.	8.0	33
24	RNA-responsive fluorescent carbon dots for fast and wash-free nucleolus imaging. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 237, 118381.	3.9	29
25	The recent development of fluorescent probes for the detection of NADH and NADPH in living cells and in vivo. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 245, 118919.	3.9	28
26	Fluorescent probes for iron, heme, and related enzymes. Coordination Chemistry Reviews, 2021, 429, 213645.	18.8	25
27	Fluorescence imaging of hypochlorous acid and peroxynitrite <i>in vitro</i> and <i>in vivo</i> with emission wavelength beyond 750 nm. Chemical Communications, 2020, 56, 7718-7721.	4.1	24
28	A fluorescence-switchable carbon dot for the reversible turn-on sensing of molecular oxygen. Journal of Materials Chemistry C, 2021, 9, 4300-4306.	5.5	24
29	A rhodol-hemicyanine based ratiometric fluorescent probe for real-time monitoring of glutathione dynamics in living cells. Analyst, The, 2019, 144, 7457-7462.	3.5	20
30	A novel fluorescent probe for highly selective and sensitive detection of hypobromous acid in arthritis model mice. Sensors and Actuators B: Chemical, 2020, 315, 128125.	7.8	20
31	Detection, detoxification, and removal of multiply heavy metal ions using a recyclable probe enabled by click and declick chemistry. Journal of Hazardous Materials, 2022, 423, 127242.	12.4	20
32	Dual microenvironmental parameter-responsive lysosome-targeting carbon dots for the high contrast discrimination of a broad spectrum of cancer cells. Chinese Chemical Letters, 2022, 33, 5051-5055.	9.0	20
33	Low Polarity-Triggered Basic Hydrolysis of Coumarin as an AND Logic Gate for Broad-Spectrum Cancer Diagnosis. Analytical Chemistry, 2021, 93, 12434-12440.	6.5	19
34	Engineering a lipid droplet targeting fluorescent probe with a large Stokes shift through ester substituent rotation for <i>in vivo</i> tumor imaging. Analyst, The, 2021, 146, 495-501.	3.5	17
35	Tuning asymmetric electronic structure endows carbon dots with unexpected huge stokes shift for high contrast in vivo imaging. Chemical Engineering Journal, 2022, 446, 136928.	12.7	17
36	Teaching a fluorophore new tricks: Exploiting the light-driven organic oxidase nanozyme properties of thiazolothiazole for highly sensitive biomedical detection. Sensors and Actuators B: Chemical, 2022, 354, 131226.	7.8	16

YUANQIANG SUN

#	Article	lF	CITATIONS
37	Simultaneous monitoring of mitochondrial viscosity and membrane potential based on fluorescence changing and location switching of carbon dots in living cells. Carbon, 2022, 195, 112-122.	10.3	16
38	Fluorescent Carbon Dots Shuttling between Mitochondria and the Nucleolus for <i>in Situ</i> Visualization of Cell Viability. ACS Applied Bio Materials, 2021, 4, 928-934.	4.6	11
39	Spatiotemporally Monitoring Cell Viability through Programmable Mitochondrial Membrane Potential Transformation by Using Fluorescent Carbon Dots. Advanced Biology, 2020, 4, 1900261.	3.0	10
40	Visual Monitoring of Nucleic Acid Dynamic Structures during Cellular Ferroptosis Using Rationally Designed Carbon Dots with Robust Anti-Interference Ability to Reactive Oxygen Species. ACS Applied Bio Materials, 2022, 5, 2703-2711.	4.6	10
41	Runx1/miR-26a/Jagged1 signaling axis controls osteoclastogenesis and alleviates orthodontically induced inflammatory root resorption. International Immunopharmacology, 2021, 100, 107991.	3.8	9
42	Highly fluorescent organic polymers for quenchometric determination of hydrogen peroxide and enzymatic determination of glucose. Mikrochimica Acta, 2019, 186, 160.	5.0	8
43	Anti-solvatochromic fluorescence of thiazole [5, 4-d] thiazole by forming hydrogen bond network and its application in fast detection of trace water. Microchemical Journal, 2020, 154, 104640.	4.5	8
44	A facile and highly efficient fluorescent turn-on switch strategy based on diketone isomerization and its application in peroxynitrite fluorescent imaging. Sensors and Actuators B: Chemical, 2021, 337, 129805.	7.8	8
45	Lighting up Individual Organelles With Fluorescent Carbon Dots. Frontiers in Chemistry, 2021, 9, 784851.	3.6	7
46	Meso-substituented pyronine: colorful emission and versatile platform for the rational design of fluorescent probes. Coordination Chemistry Reviews, 2022, 461, 214507.	18.8	6
47	Carbon Dots: Retrosynthesis of Tunable Fluorescent Carbon Dots for Precise Longâ€Term Mitochondrial Tracking (Small 48/2019). Small, 2019, 15, 1970259.	10.0	5
48	A novel fluorescence probe based on specific recognition of GABAA receptor for imaging cell membrane. Talanta, 2020, 219, 121317.	5.5	3
49	Functionalized Two-Dimensional Nanomaterials for Biosensing and Bioimaging. ACS Symposium Series, 2020, , 143-165.	0.5	1