Joseph D Berry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2855557/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Viscoelastic characterization of the crosslinking of β-lactoglobulin on emulsion drops via microcapsule compression and interfacial dilational and shear rheology. Journal of Colloid and Interface Science, 2021, 583, 404-413.	9.4	16
2	OpenDrop: Open-source software for pendant drop tensiometry contact angle measurements. Journal of Open Source Software, 2021, 6, 2604.	4.6	32
3	Lift and drag forces acting on a particle moving in the presence of slip and shear near a wall. Journal of Fluid Mechanics, 2021, 915, .	3.4	10
4	Lift and drag forces acting on a particle moving with zero slip in a linear shear flow near a wall. Journal of Fluid Mechanics, 2020, 904, .	3.4	14
5	Self-Assembly of Lubricin (PRG-4) Brushes on Graphene Oxide Affords Stable 2D-Nanosheets in Concentrated Electrolytes and Complex Fluids. ACS Applied Nano Materials, 2020, 3, 11527-11542.	5.0	9
6	Interfacial Properties of Chitosan in Interfacial Shear and Capsule Compression. ACS Applied Materials & Interfaces, 2020, 12, 48084-48092.	8.0	6
7	Poroelastic properties of hydrogel microparticles. Soft Matter, 2020, 16, 5314-5324.	2.7	14
8	Radial Wicking of Biological Fluids in Paper. Langmuir, 2020, 36, 8209-8217.	3.5	14
9	Mass transfer between microbubbles. Journal of Colloid and Interface Science, 2020, 571, 253-259.	9.4	7
10	Ricocheting Droplets Moving on Superâ€Repellent Surfaces. Advanced Science, 2019, 6, 1901846.	11.2	20
11	Use of microaspiration to study the mechanical properties of polymer gel microparticles. Soft Matter, 2019, 15, 7286-7294.	2.7	8
12	Dynamics of stain growth from sessile droplets on paper. Journal of Colloid and Interface Science, 2019, 541, 312-321.	9.4	14
13	Forces between oil drops in polymer-surfactant systems: Linking direct force measurements to microfluidic observations. Journal of Colloid and Interface Science, 2019, 544, 130-143.	9.4	22
14	Precise measurements of capsule mechanical properties using indentation. Soft Matter, 2017, 13, 1943-1947.	2.7	35
15	Decreasing the Wettability of Cellulose Nanocrystal Surfaces Using Wrinkle-Based Alignment. ACS Applied Materials & Interfaces, 2017, 9, 15202-15211.	8.0	32
16	Charge and Film Drainage of Colliding Oil Drops Coated with the Nonionic Surfactant C ₁₂ E ₅ . Langmuir, 2017, 33, 4913-4923.	3.5	22
17	Navier slip model of drag reduction by Leidenfrost vapor layers. Physics of Fluids, 2017, 29, .	4.0	19
18	Mapping coalescence of micron-sized drops and bubbles. Journal of Colloid and Interface Science, 2017, 487, 513-522.	9.4	24

JOSEPH D BERRY

#	Article	IF	CITATIONS
19	Electrophoretically mediated partial coalescence of a charged microdrop. Chemical Engineering Science, 2017, 169, 273-283.	3.8	17
20	Leidenfrost Vapor Layers Reduce Drag without the Crisis in High Viscosity Liquids. Physical Review Letters, 2016, 117, 114503.	7.8	36
21	Characterisation of stresses on microcarriers in a stirred bioreactor. Applied Mathematical Modelling, 2016, 40, 6787-6804.	4.2	38
22	Electrokinetics of isolated electrified drops. Soft Matter, 2016, 12, 3310-3325.	2.7	37
23	Numerical simulation of two-fluid flow of electrolyte solution with charged deforming interfaces. Applied Mathematical Modelling, 2016, 40, 1989-2001.	4.2	4
24	Electrolytic drops in an electric field: A numerical study of drop deformation and breakup. Physical Review E, 2015, 92, 013007.	2.1	21
25	Predictions for optimal mitigation of paracrine inhibitory signalling in haemopoietic stem cell cultures. Stem Cell Research and Therapy, 2015, 6, 58.	5.5	8
26	Measurement of surface and interfacial tension using pendant drop tensiometry. Journal of Colloid and Interface Science, 2015, 454, 226-237.	9.4	704
27	Electroviscous resistance of nanofluidic bends. Physical Review E, 2014, 90, 043008.	2.1	0
28	Electroviscous flow through nanofluidic junctions. Applied Mathematical Modelling, 2014, 38, 4215-4225.	4.2	2
29	A multiphase electrokinetic flow model for electrolytes with liquid/liquid interfaces. Journal of Computational Physics, 2013, 251, 209-222.	3.8	24
30	Effect of wall permittivity on electroviscous flow through a contraction. Biomicrofluidics, 2011, 5, 044102.	2.4	8
31	Flow dynamics of a tethered elastic capsule. Physics of Fluids, 2011, 23, 021901.	4.0	3