
Susanne Mandrup

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2855467/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Glucolipotoxicity promotes the capacity of the glycerolipid/NEFA cycle supporting the secretory response of pancreatic beta cells. Diabetologia, 2022, 65, 705-720.	6.3	13
2	Analysis of Enhancers and Transcriptional Networks in Thermogenic Adipocytes. Methods in Molecular Biology, 2022, 2448, 155-175.	0.9	0
3	Multiomics approach to uncover the pro-osteogenic properties of Barrier to Autointegration Protein 1 (BANF1). Bone Reports, 2022, 16, 101193.	0.4	Ο
4	Interplay between regulatory elements and chromatin topology in cellular lineage determination. Trends in Genetics, 2022, 38, 1048-1061.	6.7	9
5	Lipolysis regulates major transcriptional programs in brown adipocytes. Nature Communications, 2022, 13, .	12.8	16
6	Plasticity of Epididymal Adipose Tissue in Response to Diet-Induced Obesity at Single-Nucleus Resolution. Cell Metabolism, 2021, 33, 437-453.e5.	16.2	157
7	Genome-wide discovery of genetic loci that uncouple excess adiposity from its comorbidities. Nature Metabolism, 2021, 3, 228-243.	11.9	70
8	Epidermal Acyl-CoA-binding protein is indispensable for systemic energy homeostasis. Molecular Metabolism, 2021, 44, 101144.	6.5	13
9	Bacteria-host transcriptional response during endothelial invasion by Staphylococcus aureus. Scientific Reports, 2021, 11, 6037.	3.3	5
10	Transcriptional networks controlling stromal cell differentiation. Nature Reviews Molecular Cell Biology, 2021, 22, 465-482.	37.0	23
11	An intrinsically disordered region-mediated confinement state contributes to the dynamics and function of transcription factors. Molecular Cell, 2021, 81, 1484-1498.e6.	9.7	83
12	Lipolysis drives expression of the constitutively active receptor GPR3 to induce adipose thermogenesis. Cell, 2021, 184, 3502-3518.e33.	28.9	68
13	The Gliopeptide ODN, a Ligand for the Benzodiazepine Site of GABA _A Receptors, Boosts Functional Recovery after Stroke. Journal of Neuroscience, 2021, 41, 7148-7159.	3.6	6
14	Isolation of nuclei from mouse white adipose tissues for single-nucleus genomics. STAR Protocols, 2021, 2, 100612.	1.2	14
15	Highly interconnected enhancer communities control lineage-determining genes in human mesenchymal stem cells. Nature Genetics, 2020, 52, 1227-1238.	21.4	57
16	C57BL/6J substrain differences in response to high-fat diet intervention. Scientific Reports, 2020, 10, 14052.	3.3	41
17	Co-Administration of Propionate or Protocatechuic Acid Does Not Affect DHA-Specific Transcriptional Effects on Lipid Metabolism in Cultured Hepatic Cells. Nutrients, 2020, 12, 2952.	4.1	2
18	AMPK Profiling in Rodent and Human Pancreatic Beta-Cells under Nutrient-Rich Metabolic Stress. International Journal of Molecular Sciences, 2020, 21, 3982.	4.1	18

#	Article	IF	CITATIONS
19	Transcriptional Dynamics of Hepatic Sinusoidâ€Associated Cells After Liver Injury. Hepatology, 2020, 72, 2119-2133.	7.3	62
20	Loss of TLE3 promotes the mitochondrial program in beige adipocytes and improves glucose metabolism. Genes and Development, 2019, 33, 747-762.	5.9	26
21	Osteogenesis depends on commissioning of a network of stem cell transcription factors that act as repressors of adipogenesis. Nature Genetics, 2019, 51, 716-727.	21.4	156
22	Time-Resolved Systems Medicine Reveals Viral Infection-Modulating Host Targets. Systems Medicine (New Rochelle, N Y), 2019, 2, 1-9.	1.1	14
23	Transcriptional regulation of Hepatic Stellate Cell activation in NASH. Scientific Reports, 2019, 9, 2324.	3.3	65
24	ERG Controls B Cell Development by Promoting Igh V-to-DJ Recombination. Cell Reports, 2019, 29, 2756-2769.e6.	6.4	7
25	SnapShot: Niche Determines Adipocyte Character I. Cell Metabolism, 2018, 27, 264-264.e1.	16.2	21
26	SnapShot: Niche Determines Adipocyte Character II. Cell Metabolism, 2018, 27, 266-266.e1.	16.2	7
27	Neuroprotective effects of the gliopeptide ODN in an in vivo model of Parkinson's disease. Cellular and Molecular Life Sciences, 2018, 75, 2075-2091.	5.4	16
28	Integrated analysis of motif activity and gene expression changes of transcription factors. Genome Research, 2018, 28, 243-255.	5.5	58
29	Insulin signaling and reduced glucocorticoid receptor activity attenuate postprandial gene expression in liver. PLoS Biology, 2018, 16, e2006249.	5.6	45
30	Cardiolipin Synthesis in Brown and Beige Fat Mitochondria Is Essential for Systemic Energy Homeostasis. Cell Metabolism, 2018, 28, 159-174.e11.	16.2	114
31	Chromatin Immunoprecipitation for Identification of Protein–DNA Interactions in Human Cells. Methods in Molecular Biology, 2018, 1794, 335-352.	0.9	2
32	High fat diet-induced changes of mouse hepatic transcription and enhancer activity can be reversed by subsequent weight loss. Scientific Reports, 2017, 7, 40220.	3.3	62
33	Hypoxia-Inducible Lipid Droplet–Associated Is Not a Direct Physiological Regulator of Lipolysis in Adipose Tissue. Endocrinology, 2017, 158, 1231-1251.	2.8	24
34	Dynamic Rewiring of Promoter-Anchored Chromatin Loops during Adipocyte Differentiation. Molecular Cell, 2017, 66, 420-435.e5.	9.7	188
35	Genome-Wide Insights into the Development and Function of Thermogenic Adipocytes. Trends in Endocrinology and Metabolism, 2017, 28, 104-120.	7.1	29
36	The KDM5 family is required for activation of pro-proliferative cell cycle genes during adipocyte differentiation. Nucleic Acids Research, 2017, 45, 1743-1759.	14.5	49

#	Article	IF	CITATIONS
37	Multi-omics Analyses of Starvation Responses Reveal a Central Role for Lipoprotein Metabolism in Acute Starvation Survival in C.Âelegans. Cell Systems, 2017, 5, 38-52.e4.	6.2	52
38	Hierarchical role for transcription factors and chromatin structure in genome organization along adipogenesis. FEBS Journal, 2017, 284, 3230-3244.	4.7	10
39	Nuclear phosphoproteome analysis of 3T3â€L1 preadipocyte differentiation reveals systemâ€wide phosphorylation of transcriptional regulators. Proteomics, 2017, 17, 1600248.	2.2	10
40	RNA-binding protein PSPC1 promotes the differentiation-dependent nuclear export of adipocyte RNAs. Journal of Clinical Investigation, 2017, 127, 987-1004.	8.2	33
41	Cofactor squelching: Artifact or fact?. BioEssays, 2016, 38, 618-626.	2.5	44
42	Integrative Genomics Outlines a Biphasic Glucose Response and a ChREBP-RORÎ ³ Axis Regulating Proliferation in Î ² Cells. Cell Reports, 2016, 16, 2359-2372.	6.4	34
43	DBI/ACBP loss-of-function does not affect anxiety-like behaviour but reduces anxiolytic responses to diazepam in mice. Behavioural Brain Research, 2016, 313, 201-207.	2.2	11
44	MDM2 facilitates adipocyte differentiation through CRTC-mediated activation of STAT3. Cell Death and Disease, 2016, 7, e2289-e2289.	6.3	26
45	Effects of selected bioactive food compounds on human white adipocyte function. Nutrition and Metabolism, 2016, 13, 4.	3.0	21
46	A Genome-Wide Perspective on Metabolism. Handbook of Experimental Pharmacology, 2015, 233, 1-28.	1.8	3
47	Lessons Learned from Systems Approaches to Metabolism. Trends in Endocrinology and Metabolism, 2015, 26, 669-670.	7.1	0
48	RNA-Seq and Mass-Spectrometry-Based Lipidomics Reveal Extensive Changes of Glycerolipid Pathways in Brown Adipose Tissue in Response to Cold. Cell Reports, 2015, 13, 2000-2013.	6.4	74
49	iRNA-seq: computational method for genome-wide assessment of acute transcriptional regulation from total RNA-seq data. Nucleic Acids Research, 2015, 43, e40-e40.	14.5	62
50	A novel role for central <scp>ACBP</scp> / <scp>DBI</scp> as a regulator of long hain fatty acid metabolism in astrocytes. Journal of Neurochemistry, 2015, 133, 253-265.	3.9	50
51	Liver X receptor regulates hepatic nuclear O-GlcNAc signaling and carbohydrate responsive element-binding protein activity. Journal of Lipid Research, 2015, 56, 771-785.	4.2	45
52	Selection of LNA-containing DNA aptamers against recombinant human CD73. Molecular BioSystems, 2015, 11, 1260-1270.	2.9	34
53	Modulating the Genomic Programming of Adipocytes. Cold Spring Harbor Symposia on Quantitative Biology, 2015, 80, 239-248.	1.1	7
54	Acute TNF-induced repression of cell identity genes is mediated by NFκB-directed redistribution of cofactors from super-enhancers. Genome Research, 2015, 25, 1281-1294.	5.5	74

4

#	Article	IF	CITATIONS
55	Compromised epidermal barrier stimulates Harderian gland activity and hypertrophy in ACBPâ^'/â^' mice. Journal of Lipid Research, 2015, 56, 1738-1746.	4.2	6
56	Browning of human adipocytes requires KLF11 and reprogramming of PPARÎ ³ superenhancers. Genes and Development, 2015, 29, 7-22.	5.9	124
57	CD1d-mediated Presentation of Endogenous Lipid Antigens by Adipocytes Requires Microsomal Triglyceride Transfer Protein. Journal of Biological Chemistry, 2014, 289, 22128-22139.	3.4	30
58	PPARÎ ³ and the global map of adipogenesis and beyond. Trends in Endocrinology and Metabolism, 2014, 25, 293-302.	7.1	469
59	Acyl-CoA binding protein and epidermal barrier function. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 369-376.	2.4	15
60	Peroxisome Proliferator-Activated Receptor γ and C/EBPα Synergistically Activate Key Metabolic Adipocyte Genes by Assisted Loading. Molecular and Cellular Biology, 2014, 34, 939-954.	2.3	193
61	Genome-Wide Profiling of Transcription Factor Binding and Epigenetic Marks in Adipocytes by ChIP-seq. Methods in Enzymology, 2014, 537, 261-279.	1.0	23
62	Transcriptional and Epigenetic Mechanisms Underlying Enhanced in Vitro Adipocyte Differentiation by the Brominated Flame Retardant BDE-47. Environmental Science & Technology, 2014, 48, 4110-4119.	10.0	109
63	Lysine deacetylase inhibition prevents diabetes by chromatin-independent immunoregulation and β-cell protection. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1055-1059.	7.1	58
64	Transcription Factor Cooperativity in Early Adipogenic Hotspots and Super-Enhancers. Cell Reports, 2014, 7, 1443-1455.	6.4	199
65	Molecular Architecture of Transcription Factor Hotspots in Early Adipogenesis. Cell Reports, 2014, 7, 1434-1442.	6.4	58
66	Acute Genome-Wide Effects of Rosiglitazone on PPARÎ ³ Transcriptional Networks in Adipocytes. Molecular Endocrinology, 2013, 27, 1536-1549.	3.7	51
67	Archived neonatal dried blood spot samples can be used for accurate whole genome and exome-targeted next-generation sequencing. Molecular Genetics and Metabolism, 2013, 110, 65-72.	1.1	60
68	Delayed Hepatic Adaptation to Weaning in ACBPâ^'/â^' Mice Is Caused by Disruption of the Epidermal Barrier. Cell Reports, 2013, 5, 1403-1412.	6.4	32
69	Short-Chain Fatty Acids Stimulate Angiopoietin-Like 4 Synthesis in Human Colon Adenocarcinoma Cells by Activating Peroxisome Proliferator-Activated Receptor γ. Molecular and Cellular Biology, 2013, 33, 1303-1316.	2.3	219
70	Mice with targeted disruption of the acyl-CoA binding protein display attenuated urine concentrating ability and diminished renal aquaporin-3 abundance. American Journal of Physiology - Renal Physiology, 2012, 302, F1034-F1044.	2.7	9
71	Cross-species ChIP-seq studies provide insights into regulatory strategies of PPARÎ ³ in adipocytes. Transcription, 2012, 3, 19-24.	3.1	6
72	Modulation of chromatin access during adipocyte differentiation. Nucleus, 2012, 3, 12-15.	2.2	6

#	Article	IF	CITATIONS
73	Genome-Wide Profiling of Liver X Receptor, Retinoid X Receptor, and Peroxisome Proliferator-Activated Receptor α in Mouse Liver Reveals Extensive Sharing of Binding Sites. Molecular and Cellular Biology, 2012, 32, 852-867.	2.3	205
74	The acyl-CoA binding protein is required for normal epidermal barrier function in mice. Journal of Lipid Research, 2012, 53, 2162-2174.	4.2	29
75	PPARs: Fatty acid sensors controlling metabolism. Seminars in Cell and Developmental Biology, 2012, 23, 631-639.	5.0	389
76	The Transcription Factor Encyclopedia. Genome Biology, 2012, 13, R24.	9.6	103
77	Genome-Wide Profiling of Peroxisome Proliferator-Activated Receptor Î ³ in Primary Epididymal, Inguinal, and Brown Adipocytes Reveals Depot-Selective Binding Correlated with Gene Expression. Molecular and Cellular Biology, 2012, 32, 3452-3463.	2.3	109
78	Transcriptional networks and chromatin remodeling controlling adipogenesis. Trends in Endocrinology and Metabolism, 2012, 23, 56-64.	7.1	234
79	Differential effects of environmental chemicals and food contaminants on adipogenesis, biomarker release and PPARÎ ³ activation. Molecular and Cellular Endocrinology, 2012, 361, 106-115.	3.2	147
80	Effects of short-term high-fat overfeeding on genome-wide DNA methylation in the skeletal muscle of healthy young men. Diabetologia, 2012, 55, 3341-3349.	6.3	179
81	Surfactant Protein D Deficiency in Mice Is Associated with Hyperphagia, Altered Fat Deposition, Insulin Resistance, and Increased Basal Endotoxemia. PLoS ONE, 2012, 7, e35066.	2.5	14
82	Lighting the fat furnace without SFRP5. Journal of Clinical Investigation, 2012, 122, 2349-2352.	8.2	8
83	Trans-10, cis-12 conjugated linoleic acid decreases de novo lipid synthesis in human adipocytes. Journal of Nutritional Biochemistry, 2012, 23, 580-590.	4.2	39
84	TLE3 Is a Dual-Function Transcriptional Coregulator of Adipogenesis. Cell Metabolism, 2011, 13, 413-427.	16.2	119
85	Molecular basis for gene-specific transactivation by nuclear receptors. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 824-835.	3.8	67
86	Extensive chromatin remodelling and establishment of transcription factor â€~hotspots' during early adipogenesis. EMBO Journal, 2011, 30, 1459-1472.	7.8	300
87	Cross species comparison of C/EBPα and PPARγ profiles in mouse and human adipocytes reveals interdependent retention of binding sites. BMC Genomics, 2011, 12, 152.	2.8	88
88	Disruption of the Acyl-CoA-binding Protein Gene Delays Hepatic Adaptation to Metabolic Changes at Weaning. Journal of Biological Chemistry, 2011, 286, 3460-3472.	3.4	53
89	ChREBP Mediates Glucose Repression of Peroxisome Proliferator-activated Receptor α Expression in Pancreatic β-Cells. Journal of Biological Chemistry, 2011, 286, 13214-13225.	3.4	38
90	Gene program-specific regulation of PGC-1 \hat{l} ± activity. Genes and Development, 2011, 25, 1453-1458.	5.9	17

#	Article	IF	CITATIONS
91	Transcriptional Networks Controlling Adipocyte Differentiation. Cold Spring Harbor Symposia on Quantitative Biology, 2011, 76, 247-255.	1.1	60
92	Peroxisome proliferator-activated receptor α (PPARα) protects against oleate-induced INS-1E beta cell dysfunction by preserving carbohydrate metabolism. Diabetologia, 2010, 53, 331-340.	6.3	40
93	Antiobesity mechanisms of action of conjugated linoleic acid. Journal of Nutritional Biochemistry, 2010, 21, 171-179.	4.2	221
94	PPARγ in adipocyte differentiation and metabolism – Novel insights from genomeâ€wide studies. FEBS Letters, 2010, 584, 3242-3249.	2.8	330
95	PPARδ is a fatty acid sensor that enhances mitochondrial oxidation in insulin-secreting cells and protects against fatty acid-induced dysfunction. Journal of Lipid Research, 2010, 51, 1370-1379.	4.2	71
96	Activation of Peroxisome Proliferator-Activated Receptor Gamma by Human Cytomegalovirus for <i>De Novo</i> Replication Impairs Migration and Invasiveness of Cytotrophoblasts from Early Placentas. Journal of Virology, 2010, 84, 2946-2954.	3.4	55
97	MED14 Tethers Mediator to the N-Terminal Domain of Peroxisome Proliferator-Activated Receptor Î ³ and Is Required for Full Transcriptional Activity and Adipogenesis. Molecular and Cellular Biology, 2010, 30, 2155-2169.	2.3	63
98	HDACs class II-selective inhibition alters nuclear receptor-dependent differentiation. Journal of Molecular Endocrinology, 2010, 45, 219-228.	2.5	53
99	A Novel Intronic Peroxisome Proliferator-activated Receptor Î ³ Enhancer in the Uncoupling Protein (UCP) 3 Gene as a Regulator of Both UCP2 and -3 Expression in Adipocytes. Journal of Biological Chemistry, 2010, 285, 17310-17317.	3.4	50
100	Molecular Mechanisms and Genome-Wide Aspects of PPAR Subtype Specific Transactivation. PPAR Research, 2010, 2010, 1-12.	2.4	56
101	Inflammation and insulin resistance induced by trans-10, cis-12 conjugated linoleic acid depend on intracellular calcium levels in primary cultures of human adipocytes. Journal of Lipid Research, 2010, 51, 1906-1917.	4.2	44
102	Deletion of Glutamate Dehydrogenase in ß-Cells Abolishes Part of the Insulin Secretory Response Not Required for Glucose Homeostasis*. Journal of Biological Chemistry, 2009, 284, 921-929.	3.4	88
103	Peroxisome Proliferator-activated Receptor γ Regulates Expression of the Anti-lipolytic G-protein-coupled Receptor 81 (GPR81/Gpr81). Journal of Biological Chemistry, 2009, 284, 26385-26393.	3.4	76
104	The PPARγ2 A/B-Domain Plays a Gene-Specific Role in Transactivation and Cofactor Recruitment. Molecular Endocrinology, 2009, 23, 794-808.	3.7	54
105	Rexinoid Bexarotene Modulates Triglyceride but not Cholesterol Metabolism via Gene-Specific Permissivity of the RXR/LXR Heterodimer in the Liver. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1488-1495.	2.4	63
106	Peroxisome Proliferator-Activated Receptor-α ls a Functional Target of p63 in Adult Human Keratinocytes. Journal of Investigative Dermatology, 2009, 129, 2376-2385.	0.7	2
107	Conjugated Linoleic Acids Reduce Body Fat in Healthy Postmenopausal Women. Journal of Nutrition, 2009, 139, 1347-1352.	2.9	45
108	Polymorphisms in the tumor necrosis factor alpha and interleukin 1-beta promoters with possible gene regulatory functions increase the risk of preterm birth. Acta Obstetricia Et Gynecologica Scandinavica, 2008, 87, 1285-1290.	2.8	33

#	Article	IF	CITATIONS
109	The Adipogenic Acetyltransferase Tip60 Targets Activation Function 1 of Peroxisome Proliferator-Activated Receptor γ. Endocrinology, 2008, 149, 1840-1849.	2.8	60
110	Genome-wide profiling of PPARÎ ³ :RXR and RNA polymerase II occupancy reveals temporal activation of distinct metabolic pathways and changes in RXR dimer composition during adipogenesis. Genes and Development, 2008, 22, 2953-2967.	5.9	475
111	Distinct C/EBPα motifs regulate lipogenic and gluconeogenic gene expression in vivo. EMBO Journal, 2007, 26, 1081-1093.	7.8	85
112	Patients With High Bone Mass Phenotype Exhibit Enhanced Osteoblast Differentiation and Inhibition of Adipogenesis of Human Mesenchymal Stem Cells. Journal of Bone and Mineral Research, 2007, 22, 1720-1731.	2.8	149
113	ACBP – a PPAR and SREBP modulated housekeeping gene. Molecular and Cellular Biochemistry, 2006, 284, 149-157.	3.1	34
114	Glucose-induced repression of PPARα gene expression in pancreatic β-cells involves PP2A activation and AMPK inactivation. Journal of Molecular Endocrinology, 2006, 36, 289-299.	2.5	82
115	Peroxisome Proliferator-Activated Receptor Subtype- and Cell-Type-Specific Activation of Genomic Target Genes upon Adenoviral Transgene Delivery. Molecular and Cellular Biology, 2006, 26, 5698-5714.	2.3	74
116	The Gene Encoding Acyl-CoA-binding Protein Is Subject to Metabolic Regulation by Both Sterol Regulatory Element-binding Protein and Peroxisome Proliferator-activated Receptor α in Hepatocytes. Journal of Biological Chemistry, 2005, 280, 5258-5266.	3.4	44
117	Peroxisome Proliferator-Activated Receptor α (PPARα) Potentiates, whereas PPARγ Attenuates, Glucose-Stimulated Insulin Secretion in Pancreatic β-Cells. Endocrinology, 2005, 146, 3266-3276.	2.8	104
118	Glucose-induced lipogenesis in pancreatic β-cells is dependent on SREBP-1. Molecular and Cellular Endocrinology, 2005, 240, 94-106.	3.2	23
119	SREBP-1 Dimerization Specificity Maps to Both the Helix-Loop-Helix and Leucine Zipper Domains. Journal of Biological Chemistry, 2004, 279, 11863-11874.	3.4	32
120	Conjugated Linoleic Acid Induces Human Adipocyte Delipidation. Journal of Biological Chemistry, 2004, 279, 26735-26747.	3.4	142
121	Noradrenaline represses PPAR (peroxisome-proliferator-activated receptor) γ2 gene expression in brown adipocytes: intracellular signalling and effects on PPARγ2 and PPARγ1 protein levels. Biochemical Journal, 2004, 382, 597-606.	3.7	42
122	Isomer-specific regulation of metabolism and PPARÎ ³ signaling by CLA in human preadipocytes. Journal of Lipid Research, 2003, 44, 1287-1300.	4.2	192
123	The Orphan Nuclear Receptor Rev-Erbα Is a Peroxisome Proliferator-activated Receptor (PPAR) γ Target Gene and Promotes PPARγ-induced Adipocyte Differentiation. Journal of Biological Chemistry, 2003, 278, 37672-37680.	3.4	215
124	Insulin-like Growth Factor-1/Insulin Bypasses Pref-1/FA1-mediated Inhibition of Adipocyte Differentiation. Journal of Biological Chemistry, 2003, 278, 20906-20914.	3.4	46
125	Pancreatic Â-Cell Lipotoxicity Induced by Overexpression of Hormone-Sensitive Lipase. Diabetes, 2003, 52, 2057-2065.	0.6	57
126	The Gene Encoding the Acyl-CoA-binding Protein Is Activated by Peroxisome Proliferator-activated Receptor γ through an Intronic Response Element Functionally Conserved between Humans and Rodents. Journal of Biological Chemistry, 2002, 277, 26821-26830.	3.4	94

#	Article	IF	CITATIONS
127	Nuclear receptor corepressor-dependent repression of peroxisome-proliferator-activated receptor δ-mediated transactivation. Biochemical Journal, 2002, 363, 157.	3.7	59
128	Genomic organization of the mouse peroxisome proliferator-activated receptor β/δ gene: alternative promoter usage and splicing yield transcripts exhibiting differential translational efficiency. Biochemical Journal, 2002, 366, 767-775.	3.7	45
129	Nuclear receptor corepressor-dependent repression of peroxisome-proliferator-activated receptor δ-mediated transactivation. Biochemical Journal, 2002, 363, 157-165.	3.7	88
130	Adipogenesis: forces that tip the scales. Trends in Endocrinology and Metabolism, 2002, 13, 5-11.	7.1	314
131	Title is missing!. Molecular and Cellular Biochemistry, 2002, 239, 157-164.	3.1	21
132	Opposing Effects of Fatty Acids and Acyl oA Esters on Conformation and Cofactor Recruitment of Peroxisome Proliferatorâ€Activated Receptors. Annals of the New York Academy of Sciences, 2002, 967, 431-439.	3.8	14
133	Role of adipocyte lipid-binding protein (ALBP) and acyl-CoA binding protein (ACBP) in PPAR-mediated transactivation. , 2002, , 157-164.		9
134	Tetradecylthioacetic acid prevents high fat diet induced adiposity and insulin resistance. Journal of Lipid Research, 2002, 43, 742-50.	4.2	42
135	Role of adipocyte lipid-binding protein (ALBP) and acyl-coA binding protein (ACBP) in PPAR-mediated transactivation. Molecular and Cellular Biochemistry, 2002, 239, 157-64.	3.1	13
136	Acyl-CoA Esters Antagonize the Effects of Ligands on Peroxisome Proliferator-activated Receptor α Conformation, DNA Binding, and Interaction with Co-factors. Journal of Biological Chemistry, 2001, 276, 21410-21416.	3.4	46
137	Lipid-binding proteins modulate ligand-dependent trans-activation by peroxisome proliferator-activated receptors and localize to the nucleus as well as the cytoplasm. Journal of Lipid Research, 2000, 41, 1740-1751.	4.2	99
138	Lipid-binding proteins modulate ligand-dependent trans-activation by peroxisome proliferator-activated receptors and localize to the nucleus as well as the cytoplasm. Journal of Lipid Research, 2000, 41, 1740-51.	4.2	89
139	Microaffinity Columns for Analysis of Protein–Protein Interactions. Analytical Biochemistry, 1999, 271, 102-105.	2.4	10
140	Inhibition of 3T3-L1 Adipocyte Differentiation by Expression of Acyl-CoA-binding Protein Antisense RNA. Journal of Biological Chemistry, 1998, 273, 23897-23903.	3.4	53
141	Regulating Adipogenesis. Journal of Biological Chemistry, 1997, 272, 5367-5370.	3.4	380
142	Obese gene expression at in vivo levels by fat pads derived from s.c. implanted 3T3-F442A preadipocytes. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 4300-4305.	7.1	138
143	ADIPOCYTE DIFFERENTIATION AND LEPTIN EXPRESSION. Annual Review of Cell and Developmental Biology, 1997, 13, 231-259.	9.4	220
144	Regulatory elements in the promoter region of the rat gene encoding the acyl-CoA-binding protein. Gene, 1996, 173, 233-238.	2.2	24

#	ARTICLE	IF	CITATIONS
145	Structure of the rat gene encoding the multifunctional acyl-CoA-binding protein: Conservation of intron 1 sequences in rodents and man. Gene, 1996, 173, 239-240.	2.2	4
146	Transcriptional activation of the mouse obese (ob) gene by CCAAT/enhancer binding protein alpha Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 873-877.	7.1	178
147	Adipocyte Differentiation is Dependent on the Induction of the Acyl-CoA Binding Protein. , 1995, , 365-374.		1
148	Genome organization and expression of the rat ACBP gene family. Molecular and Cellular Biochemistry, 1993, 123, 55-61.	3.1	13
149	The function of acyl-CoA-binding protein (ACBP)/Diazepam binding inhibitor (DBI). Molecular and Cellular Biochemistry, 1993, 123, 129-138.	3.1	117
150	Effect of heterologous expression of acyl-CoA-binding protein on acyl-CoA level and composition in yeast. Biochemical Journal, 1993, 290, 369-374.	3.7	95
151	The function of acyl-CoA-binding protein (ACBP)/Diazepam binding inhibitor (DBI). , 1993, , 129-138.		3
152	Genome organization and expression of the rat ACBP gene family. , 1993, , 55-61.		0
153	Acyl-CoA-binding protein/diazepam-binding inhibitor gene and pseudogenes. Journal of Molecular Biology, 1992, 228, 1011-1022.	4.2	107
154	The secondary structure in solution of acyl-coenzyme A binding protein from bovine liver using proton nuclear magnetic resonance spectroscopy. Biochemistry, 1991, 30, 10654-10663.	2.5	32
155	Gene synthesis, expression in Escherichia coli, purification and characterization of the recombinant bovine acyl-CoA-binding protein. Biochemical Journal, 1991, 276, 817-823.	3.7	63
156	Induction of acyl-CoA-binding protein and its mRNA in 3T3-L1 cells by insulin during preadipocyte-to-adipocyte differentiation. Biochemical Journal, 1991, 277, 341-344.	3.7	53
157	Structure, Function, and Phylogeny of Acyl-CoA Binding Protein. , 0, , 151-171.		3