Tao Lou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2853815/publications.pdf Version: 2024-02-01

TAOLOU

#	Article	IF	CITATIONS
1	Preparation of chitosan/DADMAC/lignin terpolymer and its application of dye wastewater flocculation. Polymer Bulletin, 2022, 79, 7479-7490.	1.7	6
2	Simultaneous adsorption for cationic and anionic dyes using chitosan/electrospun sodium alginate nanofiber composite sponges. Carbohydrate Polymers, 2022, 276, 118728.	5.1	43
3	Preparation of millimeter-scale hollow sphere with cationic chitosan/ dimethyl diallyl ammonium chloride /carboxymethyl cellulose terpolymer and its selective removal of anionic dye. Journal of Cleaner Production, 2022, 331, 130017.	4.6	19
4	Lignocellulose–acrylamide–carboxymethyl cellulose copolymer as a cost-effective anionic flocculant. Iranian Polymer Journal (English Edition), 2022, 31, 587-594.	1.3	3
5	Electrospun molecularly imprinted sodium alginate/polyethylene oxide nanofibrous membranes for selective adsorption of methylene blue. International Journal of Biological Macromolecules, 2022, 207, 62-71.	3.6	31
6	Preparation of carboxymethyl cellulose/chitosan-CuO giant vesicles for the adsorption and catalytic degradation of dyes. Carbohydrate Polymers, 2022, 291, 119630.	5.1	19
7	Regenerable Fe3O4-decorated chitosan/carboxymethyl cellulose hollow spheres for adsorption and catalytic degradation of dyes. Cellulose, 2022, 29, 7251-7262.	2.4	2
8	Preparation of fibrous chitosan/sodium alginate composite foams for the adsorption of cationic and anionic dyes. Journal of Hazardous Materials, 2021, 403, 124054.	6.5	182
9	Preparation and Flocculation Property of Cationic Chitosanâ€DADMACâ€Î²â€Cyclodextrin Copolymer. Starch/Staerke, 2021, 73, 2100047.	1.1	6
10	A cost-effective anionic flocculant prepared by grafting carboxymethyl cellulose and lignosulfonate with acrylamide. Cellulose, 2021, 28, 11013-11023.	2.4	16
11	Preparation of chitosan/gelatin composite foam with ternary solvents of dioxane/acetic acid/water and its water absorption capacity. Polymer Bulletin, 2020, 77, 5227-5244.	1.7	40
12	Electrospun cellulose acetate/P(DMDAACâ€AM) nanofibrous membranes for dye adsorption. Journal of Applied Polymer Science, 2020, 137, 48565.	1.3	24
13	Synthesis of lignosulfonateâ€acrylamideâ€dimethyldiallylammonium chloride copolymer and its flocculation performance. Journal of Applied Polymer Science, 2020, 137, 48560.	1.3	5
14	Preparation of millimeter-sized chitosan/carboxymethyl cellulose hollow capsule and its dye adsorption properties. Carbohydrate Polymers, 2020, 244, 116481.	5.1	71
15	Microwave assisted copolymerization of sodium alginate and dimethyl diallyl ammonium chloride as flocculant for dye removal. International Journal of Biological Macromolecules, 2020, 156, 585-590.	3.6	38
16	Synthesis of a starch–acrylic acid–chitosan copolymer as flocculant for dye removal. Journal of Applied Polymer Science, 2019, 136, 47437.	1.3	34
17	Chitosan coated polyacrylonitrile nanofibrous mat for dye adsorption. International Journal of Biological Macromolecules, 2019, 135, 919-925.	3.6	68
18	Synthesis of a terpolymer based on chitosan and lignin as an effective flocculant for dye removal. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 537, 149-154.	2.3	80

Tao Lou

#	Article	IF	CITATIONS
19	Fabrication of pure chitosan nanofibrous membranes as effective absorbent for dye removal. International Journal of Biological Macromolecules, 2018, 106, 768-774.	3.6	124
20	In Situ Electrospinning Iodine-Based Fibrous Meshes for Antibacterial Wound Dressing. Nanoscale Research Letters, 2018, 13, 309.	3.1	74
21	Preparation of micro-nanofibrous chitosan sponges with ternary solvents for dye adsorption. Carbohydrate Polymers, 2018, 198, 69-75.	5.1	37
22	Synthesis and flocculation performance of a chitosan-acrylamide-fulvic acid ternary copolymer. Carbohydrate Polymers, 2017, 170, 182-189.	5.1	40
23	Microwave assisted synthesis and characterization of a ternary flocculant from chitosan, acrylamide and lignin. International Biodeterioration and Biodegradation, 2017, 123, 269-275.	1.9	26
24	A Three-Dimensional Porous Conducting Polymer Composite with Ultralow Density and Highly Sensitive Pressure Sensing Properties. Journal of Nanomaterials, 2016, 2016, 1-8.	1.5	4
25	Colorful Hydrophobic Poly(Vinyl Butyral)/Cationic Dye Fibrous Membranes via a Colored Solution Electrospinning Process. Nanoscale Research Letters, 2016, 11, 540.	3.1	21
26	The effect of fiber size and pore size on cell proliferation and infiltration in PLLA scaffolds on bone tissue engineering. Journal of Biomaterials Applications, 2016, 30, 1545-1551.	1.2	63
27	Fabrication and biocompatibility of poly(l-lactic acid) and chitosan composite scaffolds with hierarchical microstructures. Materials Science and Engineering C, 2016, 64, 341-345.	3.8	33
28	Preparation of pure chitosan film using ternary solvents and its super absorbency. Carbohydrate Polymers, 2016, 153, 253-257.	5.1	27
29	Structure and properties of PLLA/β-TCP nanocomposite scaffolds for bone tissue engineering. Journal of Materials Science: Materials in Medicine, 2015, 26, 5366.	1.7	30
30	Preparation of lignosulfonate–acrylamide–chitosan ternary graft copolymer and its flocculation performance. International Journal of Biological Macromolecules, 2015, 81, 1053-1058.	3.6	35
31	Photodegradation of Humic Acid and its Effect on the Property of Copper Binding. Advanced Materials Research, 2014, 898, 470-473.	0.3	1
32	Bi-Layer Scaffold of Chitosan/PCL-Nanofibrous Mat and PLLA-Microporous Disc for Skin Tissue Engineering. Journal of Biomedical Nanotechnology, 2014, 10, 1105-1113.	0.5	48
33	Fabrication of PLLA/Î ² -TCP nanocomposite scaffolds with hierarchical porosity for bone tissue engineering. International Journal of Biological Macromolecules, 2014, 69, 464-470.	3.6	82
34	Fabrication of nano-fibrous poly(l-lactic acid) scaffold reinforced by surface modified chitosan micro-fiber. International Journal of Biological Macromolecules, 2013, 61, 353-358.	3.6	25
35	Preparation and Characterization of Layer Structured Porous Chitosan Scaffold for Tissue Engineering. Applied Mechanics and Materials, 2012, 198-199, 179-182.	0.2	0
36	Fabrication of Nano-Fibrous Poly(L-Lactic Acid) Scaffold Enhanced by Silane Modified Chitosan Fibers. Applied Mechanics and Materials, 2012, 152-154, 609-612.	0.2	0

Tao Lou

#	Article	IF	CITATIONS
37	Fabrication and characterization of nano-composite scaffold of PLLA/silane modified hydroxyapatite. Medical Engineering and Physics, 2010, 32, 391-397.	0.8	74
38	Fabrication and characterization of nano composite scaffold of poly(l-lactic acid)/hydroxyapatite. Journal of Materials Science: Materials in Medicine, 2010, 21, 183-188.	1.7	35
39	Photochemical production of dissolved inorganic carbon from suwannee river humic acid. Chinese Journal of Oceanology and Limnology, 2009, 27, 570-573.	0.7	12
40	Fabrication of Nano-fibrous PLLA Scaffold Reinforced with Chitosan Fibers. Journal of Biomaterials Science, Polymer Edition, 2009, 20, 1995-2002.	1.9	25
41	Effects of photodegradation of dissolved organic matter on the binding of benzo(a)pyrene. Chemosphere, 2006, 64, 1204-1211.	4.2	31
42	Photochemical alteration of the molecular weight of dissolved organic matter. Chemosphere, 2006, 65, 2333-2342.	4.2	103
43	Preparation of Nano-Fibrous Poly(L-lactic acid) Scaffold with Hierarchical Pores. Advanced Materials Research, 0, 418-420, 303-306.	0.3	0
44	Degradability Research of Nano-PLLA/Chitosan Composite Scaffolds. Advanced Materials Research, 0, 650, 245-248.	0.3	0
45	Preparation and Characterization of Porous PLGA Scaffold for Tissue Engineering. Advanced Materials Research, 0, 898, 322-325.	0.3	0
46	Preparation of PLLA/HAP/β-TCP Composite Scaffold for Bone Tissue Engineering. Applied Mechanics and Materials, 0, 513-517, 143-146.	0.2	3