Heping Cao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2853792/publications.pdf

Version: 2024-02-01

X
8
hors

#	Article	IF	Citations
1	The hepatoprotective effects of plant-based foods based on the "gut–liver axis― a prospective review. Critical Reviews in Food Science and Nutrition, 2023, 63, 9136-9162.	5.4	5
2	Cottonseed extracts regulate gene expression in human colon cancer cells. Scientific Reports, 2022, 12, 1039.	1.6	3
3	Gossypol decreased cell viability and down-regulated the expression of a number of genes in human colon cancer cells. Scientific Reports, 2021, 11, 5922.	1.6	23
4	Cottonseed-derived gossypol and ethanol extracts differentially regulate cell viability and VEGF gene expression in mouse macrophages. Scientific Reports, 2021, 11, 15700.	1.6	7
5	The red flower wintersweet genome provides insights into the evolution of magnoliids and the molecular mechanism for tepal color development. Plant Journal, 2021, 108, 1662-1678.	2.8	12
6	Flower biology and ontogeny of the tung tree (Vernicia fordii Hemsl.). Trees - Structure and Function, 2020, 34, 1363-1381.	0.9	5
7	Cottonseed Ethanol Extracts and Gossypol Regulate Anti-Inflammatory Tristetraprolin Family Gene Expression in Mouse Cells. Current Developments in Nutrition, 2020, 4, nzaa045_007.	0.1	1
8	Regulation of Cell Viability and Anti-inflammatory Tristetraprolin Family Gene Expression in Mouse Macrophages by Cottonseed Extracts. Scientific Reports, 2020, 10, 775.	1.6	13
9	Evaluation of coordinated development of forestry management efficiency and forest ecological security: A spatiotemporal empirical study based on China's provinces. Journal of Cleaner Production, 2020, 260, 121042.	4.6	51
10	Regulation of VEGF Gene Expression in Mouse Macrophages by Cottonseed Extracts, Gossypol and Lipopolysaccharides (P06-035-19). Current Developments in Nutrition, 2019, 3, nzz031.P06-035-19.	0.1	0
11	Gossypol but Not Cottonseed Extracts or Lipopolysaccharides Stimulates HuR Gene Expression in Mouse Macrophages (P06-071-19). Current Developments in Nutrition, 2019, 3, nzz031.P06-071-19.	0.1	O
12	Gossypol but not cottonseed extracts or lipopolysaccharides stimulates HuR gene expression in mouse cells. Journal of Functional Foods, 2019, 59, 25-29.	1.6	9
13	Tung Tree (Vernicia fordii) Genome Provides A Resource for Understanding Genome Evolution and Improved Oil Production. Genomics, Proteomics and Bioinformatics, 2019, 17, 558-575.	3.0	43
14	A comparison of the transcriptomes between diploid and autotetraploid Paulownia fortunei under salt stress. Physiology and Molecular Biology of Plants, 2019, 25, 1-11.	1.4	16
15	Boosting C16 fatty acid biosynthesis of Escherichia coli, yeast and tobacco by tung tree (Vernicia) Tj ETQq1 1 0. 2019, 127, 46-54.	.784314 rg 2.5	gBT /Overlock 11
16	Cinnamon Polyphenol Extract and Insulin Regulate Diacylglycerol Acyltransferase Gene Expression in Mouse Adipocytes and Macrophages. Plant Foods for Human Nutrition, 2019, 74, 115-121.	1.4	13
17	Identification of the major diacylglycerol acyltransferase mRNA in mouse adipocytes and macrophages. BMC Biochemistry, 2018, 19, 11.	4.4	6
18	Cottonseed Extracts and Gossypol Regulate Diacylglycerol Acyltransferase Gene Expression in Mouse Macrophages. Journal of Agricultural and Food Chemistry, 2018, 66, 6022-6030.	2.4	15

#	Article	IF	CITATIONS
19	Protein profiling of water and alkali soluble cottonseed protein isolates. Scientific Reports, 2018, 8, 9306.	1.6	24
20	Hormonal regulation of floret closure of rice (Oryza sativa). PLoS ONE, 2018, 13, e0198828.	1.1	6
21	Cyclopropane fatty acid biosynthesis in plants: phylogenetic and biochemical analysis of Litchi Kennedy pathway and acyl editing cycle genes. Plant Cell Reports, 2018, 37, 1571-1583.	2.8	5
22	Isolation of Cottonseed Extracts That Affect Human Cancer Cell Growth. Scientific Reports, 2018, 8, 10458.	1.6	30
23	Cottonseed Extracts and Gossypol Regulate Diacylglycerol Acyltransferase Gene Expression in Mouse Macrophages. FASEB Journal, 2018, 32, 826.8.	0.2	0
24	Identification of the Major Diacylglycerol Acyltransferase mRNA in Eukaryotic Cells. FASEB Journal, 2018, 32, 672.8.	0.2	0
25	Aspergillus flavusgrowth and aflatoxin production as influenced by total lipid content during growth and development of cottonseed. Journal of Crop Improvement, 2017, 31, 91-99.	0.9	7
26	Comprehensive Transcriptome Analysis of Phytohormone Biosynthesis and Signaling Genes in the Flowers of Chinese Chinquapin (<i>Castanea henryi</i>). Journal of Agricultural and Food Chemistry, 2017, 65, 10332-10349.	2.4	34
27	The complete chloroplast genome sequence of tung tree (Vernicia fordii): Organization and phylogenetic relationships with other angiosperms. Scientific Reports, 2017, 7, 1869.	1.6	38
28	Effects of cooking methods on starch and sugar composition of sweetpotato storage roots. PLoS ONE, 2017, 12, e0182604.	1.1	23
29	Cytotoxicity of ethanol extracts from glanded and glandless cottonseed in cultured mouse RAW macrophages. FASEB Journal, 2017, 31, 667.5.	0.2	0
30	Plant Polyphenol Extract Regulated Diacylglycerol Acyltransferase and Tristetraprolin Gene Expression in Cultured Mouse Cells. FASEB Journal, 2017, 31, .	0.2	0
31	Characterization of Glycolytic Pathway Genes Using RNA-Seq in Developing Kernels of <i>Eucommia ulmoides</i> . Journal of Agricultural and Food Chemistry, 2016, 64, 3712-3731.	2.4	17
32	Antidiabetic Potential of Purple and Red Rice (<i>Oryza sativa</i> L.) Bran Extracts. Journal of Agricultural and Food Chemistry, 2016, 64, 5345-5353.	2.4	114
33	Identification of an Mg ²⁺ -Independent Soluble Phosphatidate Phosphatase in Cottonseed (<l>Gossypium hirsutum L.). Advances in Biological Chemistry, 2016, 06, 169-179.</l>	0.2	0
34	Transcriptomic Identification and Expression of Starch and Sucrose Metabolism Genes in the Seeds of Chinese Chestnut (<i>Castanea mollissima</i>). Journal of Agricultural and Food Chemistry, 2015, 63, 929-942.	2.4	41
35	Development and analysis of a highly flexible multi-gene expression system for metabolic engineering in Arabidopsis seeds and other plant tissues. Plant Molecular Biology, 2015, 89, 113-126.	2.0	27
36	Genome-Wide Analysis of Oleosin Gene Family in 22 Tree Species: An Accelerator for Metabolic Engineering of BioFuel Crops and Agrigenomics Industrial Applications?. OMICS A Journal of Integrative Biology, 2015, 19, 521-541.	1.0	2

#	Article	IF	Citations
37	Molecular cloning and expression profile of β-ketoacyl-acp synthase gene from tung tree (Vernicia) Tj ETQq1 1 C	0.784314	rgBŢ /Overloc
38	Identification of a Major Phosphopeptide in Human Tristetraprolin by Phosphopeptide Mapping and Mass Spectrometry. PLoS ONE, 2014, 9, e100977.	1.1	11
39	Intrinsic Fluorescence Excitation–Emission Matrix Spectral Features of Cottonseed Protein Fractions and the Effects of Denaturants. JAOCS, Journal of the American Oil Chemists' Society, 2014, 91, 1489-1497.	0.8	27
40	Identification, Classification and Differential Expression of Oleosin Genes in Tung Tree (Vernicia) Tj ETQq0 0 0 rg	BT /Overlo	ock 10 Tf 50 6
41	Fatty Acid Profile and Unigene-Derived Simple Sequence Repeat Markers in Tung Tree (Vernicia fordii). PLoS ONE, 2014, 9, e105298.	1.1	23
42	Characterization of a Soluble Phosphatidic Acid Phosphatase in Bitter Melon (Momordica charantia). PLoS ONE, 2014, 9, e106403.	1.1	4
43	Identification and Expression of Fructose-1,6-Bisphosphate Aldolase Genes and Their Relations to Oil Content in Developing Seeds of Tea Oil Tree (Camellia oleifera). PLoS ONE, 2014, 9, e107422.	1.1	44
44	Identification, classification and differential expression of oleosin genes in tung tree (605.3). FASEB Journal, 2014, 28, 605.3.	0.2	0
45	Quantitative PCR for glucose transporter and tristetraprolin family gene expression in cultured mouse adipocytes and macrophages. In Vitro Cellular and Developmental Biology - Animal, 2013, 49, 759-770.	0.7	13
46	Molecular properties of the class III subfamily of acyl-coenyzme A binding proteins from tung tree (Vernicia fordii). Plant Science, 2013, 203-204, 79-88.	1.7	31
47	Characterization of reference gene expression in tung tree (Vernicia fordii). Industrial Crops and Products, 2013, 50, 248-255.	2.5	12
48	Mutant tristetraprolin: a potent inhibitor of malignant glioma cell growth. Journal of Neuro-Oncology, 2013, 113, 195-205.	1.4	23
49	Effects of Vigorous Blending on Yield and Quality of Protein Isolates Extracted From Cottonseed and Soy Flours. Modern Applied Science, 2013, 7, .	0.4	34
50	A Transcript Profiling Approach Reveals an Abscisic Acid-Specific Glycosyltransferase (UGT73C14) Induced in Developing Fiber of Ligon lintless-2 Mutant of Cotton (Gossypium hirsutum L.). PLoS ONE, 2013, 8, e75268.	1.1	27
51	Developmental Regulation of Diacylglycerol Acyltransferase Family Gene Expression in Tung Tree Tissues. PLoS ONE, 2013, 8, e76946.	1.1	51
52	Comparison of TaqMan and SYBR Green qPCR Methods for Quantitative Gene Expression in Animals. FASEB Journal, 2013, 27, 574.5.	0.2	1
53	Comparison of TaqMan and SYBR Green qPCR Methods for Quantitative Gene Expression in Plants. FASEB Journal, 2013, 27, 574.4.	0.2	0
54	Comparison of TaqMan and SYBR Green qPCR Methods for Quantitative Gene Expression in Tung Tree Tissues. Journal of Agricultural and Food Chemistry, 2012, 60, 12296-12303.	2.4	81

#	Article	IF	Citations
55	Glyceollins, Soy Isoflavone Phytoalexins, Improve Oral Glucose Disposal by Stimulating Glucose Uptake. Journal of Agricultural and Food Chemistry, 2012, 60, 6376-6382.	2.4	32
56	Expression and purification of recombinant tung tree diacylglycerol acyltransferase 2. Applied Microbiology and Biotechnology, 2012, 96, 711-727.	1.7	18
57	Expression profiles of genes coding for oil biosynthesis in developing Tung seeds. FASEB Journal, 2012, 26, 576.9.	0.2	0
58	Cinnamon Polyphenol Extract Regulates Tristetraprolin and Related Gene Expression in Mouse Adipocytes. Journal of Agricultural and Food Chemistry, 2011, 59, 2739-2744.	2.4	37
59	Structure-Function Analysis of Diacylglycerol Acyltransferase Sequences from 70 Organisms. BMC Research Notes, 2011, 4, 249.	0.6	99
60	Expression of a lipid-inducible, self-regulating form of Yarrowia lipolytica lipase LIP2 in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2011, 92, 1207-1217.	1.7	10
61	Expression of tung tree diacylglycerol acyltransferase 1 in E. coli. BMC Biotechnology, 2011, 11, 73.	1.7	20
62	Cinnamon extract regulates glucose transporter and insulin-signaling gene expression in mouse adipocytes. Phytomedicine, 2010, 17, 1027-1032.	2.3	98
63	Cinnamon and Immune Actions: Potential Role in Tristetraprolin-Mediated Inflammatory Diseases. , 2010, , 553-565.		0
64	Cinnamon extract increases tristetraprolin and decreases vascular endothelial growth factor gene expression in mouse adipocytes. FASEB Journal, 2010, 24, 335.3.	0.2	0
65	Quantitative evaluation of Hisâ€tag purification and immunoprecipitation of tristetraprolin and its mutant proteins from transfected human cells. Biotechnology Progress, 2009, 25, 461-467.	1.3	7
66	Chromium regulation of multiple gene expression in rats with highâ€fructose dietâ€induced metabolic syndrome. FASEB Journal, 2009, 23, 726.2.	0.2	0
67	Evaluation of Hisâ€ŧag and immunoprecipitation procedures for recombinant protein purification. FASEB Journal, 2009, 23, 518.1.	0.2	0
68	Cinnamon extract exhibits insulinâ€like and independent effects on gene expression in adipocytes. FASEB Journal, 2009, 23, 109.4.	0.2	1
69	Phosphorylation of Recombinant Tristetraprolin InÂvitro. Protein Journal, 2008, 27, 163-169.	0.7	19
70	Insulin Increases Tristetraprolin and Decreases VEGF Gene Expression in Mouse 3T3–L1 Adipocytes. Obesity, 2008, 16, 1208-1218.	1.5	46
71	Production and Characterization of ZFP36L1 Antiserum against Recombinant Protein from Escherichia coli. Biotechnology Progress, 2008, 24, 326-333.	1.3	11
72	Cinnamon Polyphenol Extract Affects Immune Responses by Regulating Anti- and Proinflammatory and Glucose Transporter Gene Expression in Mouse Macrophages , ,3. Journal of Nutrition, 2008, 138, 833-840.	1.3	121

#	Article	IF	CITATIONS
73	Cinnamon affects immune responses by regulating anti―and pro―nflammatory gene expression and energy metabolism in macrophages. FASEB Journal, 2008, 22, 158.6.	0.2	O
74	Production and characterization of ZFP36L1 antiserum against recombinant protein from Escherichia coli. FASEB Journal, 2008, 22, 1003.7.	0.2	0
75	Green tea increases insulin sensitivity and decreases brain oxidative stress in fructoseâ€fed rats. FASEB Journal, 2008, 22, 445.4.	0.2	0
76	Cinnamon extract and polyphenols affect the expression of tristetraprolin, insulin receptor, and glucose transporter 4 in mouse 3T3-L1 adipocytes. Archives of Biochemistry and Biophysics, 2007, 459, 214-222.	1.4	234
77	Green Tea Polyphenol Extract Regulates the Expression of Genes Involved in Glucose Uptake and Insulin Signaling in Rats Fed a High Fructose Diet. Journal of Agricultural and Food Chemistry, 2007, 55, 6372-6378.	2.4	122
78	Phosphorylation site analysis of the anti-inflammatory and mRNA-destabilizing protein tristetraprolin. Expert Review of Proteomics, 2007, 4, 711-726.	1.3	47
79	Green tea increases anti-inflammatory tristetraprolin and decreases pro-inflammatory tumor necrosis factor mRNA levels in rats. Journal of Inflammation, 2007, 4, 1.	1.5	82
80	Green tea increases the antiâ€inflammatory tristetraprolin and decreases the proâ€inflammatory tumor necrosis factor mRNA levels in rats. FASEB Journal, 2007, 21, A165.	0.2	0
81	Insulin regulation of tristetraprolin family and some related gene expression in mouse 3T3‣1 adipocytes. FASEB Journal, 2007, 21, A281.	0.2	0
82	Identification of the anti-inflammatory protein tristetraprolin as a hyperphosphorylated protein by mass spectrometry and site-directed mutagenesis. Biochemical Journal, 2006, 394, 285-297.	1.7	76
83	Insulin and cinnamon polyphenols increase the amount of insulin receptor b, glucose transporter 4, and antiâ€inflammatory protein tristetraprolin in mouse 3T3â€L1 adipocytes. FASEB Journal, 2006, 20, A939.	0.2	0
84	Immunological Characterization of Tristetraprolin as a Low Abundance, Inducible, Stable Cytosolic Protein. Journal of Biological Chemistry, 2004, 279, 21489-21499.	1.6	91
85	Expression, Purification, and Biochemical Characterization of the Antiinflammatory Tristetraprolin:Â A Zinc-Dependent mRNA Binding Protein Affected by Posttranslational Modificationsâ€,‡. Biochemistry, 2004, 43, 13724-13738.	1.2	68
86	Expression and purification of recombinant tristetraprolin that can bind to tumor necrosis factor-α mRNA and serve as a substrate for mitogen-activated protein kinases. Archives of Biochemistry and Biophysics, 2003, 412, 106-120.	1.4	74
87	Decreased Sensitivity of Tristetraprolin-deficient Cells to p38 Inhibitors Suggests the Involvement of Tristetraprolin in the p38 Signaling Pathway. Journal of Biological Chemistry, 2001, 276, 42580-42587.	1.6	174
88	Purification and Characterization of Soluble Starch Synthases from Maize Endosperm. Archives of Biochemistry and Biophysics, 2000, 373, 135-146.	1.4	59
89	Identification of the Soluble Starch Synthase Activities of Maize Endosperm1. Plant Physiology, 1999, 120, 205-216.	2.3	149
90	Purification and Molecular Genetic Characterization of ZPU1, a Pullulanase-Type Starch-Debranching Enzyme from Maize1. Plant Physiology, 1999, 119, 255-266.	2.3	101

#	Article	IF	CITATIONS
91	Site-directed mutagenesis evidence for arginine-384 residue at the active site of maize branching enzyme II. The Protein Journal, 1999 , 18 , $379-386$.	1.1	6
92	Brittle-1, an Adenylate Translocator, Facilitates Transfer of Extraplastidial Synthesized ADP-Glucose into Amyloplasts of Maize Endosperms1. Plant Physiology, 1998, 117, 1235-1252.	2.3	208
93	BT1, a possible adenylate translocator, is developmentally expressed in maize endosperm but not detected in starchy tissues from several other species. Physiologia Plantarum, 1997, 100, 400-406.	2.6	2
94	BT1, a possible adenylate translocator, is developmentally expressed in maize endosperm but not detected in starchy tissues from several other species. Physiologia Plantarum, 1997, 100, 400-406.	2.6	23
95	Effect of Gibberellin on Growth, Protein Secretion, and Starch Accumulation in Maize Endosperm Suspension Cells. Journal of Plant Growth Regulation, 1997, 16, 137-140.	2.8	11
96	DNA homologues in some species and expression patterns in cucumber organs of genes corresponding to cDNAs from carrot somatic embryogenesis cultures. Journal of Plant Physiology, 1996, 149, 69-72.	1.6	1
97	Evidence for essential arginine residues at the active sites of maize branching enzymes. The Protein Journal, 1996, 15, 291-304.	1.1	28
98	BT1, a protein critical for in vivo starch accumulation in maize endosperm, is not detected in maize endosperm suspension cultures. Physiologia Plantarum, 1996, 97, 665-673.	2.6	26
99	BT1, a protein critical for in vivo starch accumulation in maize endosperm, is not detected in maize endosperm suspension cultures. Physiologia Plantarum, 1996, 97, 665-673.	2.6	3
100	Brassinosteroid-induced rice lamina joint inclination and its relation to indole-3-acetic acid and ethylene. Plant Growth Regulation, 1995, 16, 189-196.	1.8	72
101	Btl, a structural gene for the major 39-44 kDa amyloplast membrane polypeptides. Physiologia Plantarum, 1995, 95, 176-186.	2.6	78
102	Bt1, a structural gene for the major 39-44 kDa amyloplast membrane polypeptides. Physiologia Plantarum, 1995, 95, 176-186.	2.6	12
103	Growth Factors, Cytokines, and Chemokines: Formulation, Delivery, and Pharmacokinetics. , 0, , 1197-1223.		O