
Geoff Pegg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2853714/publications.pdf Version: 2024-02-01

CFOFF PFCC

#	Article	IF	CITATIONS
1	Both Constitutive and Infection-Responsive Secondary Metabolites Linked to Resistance against Austropuccinia psidii (Myrtle Rust) in Melaleuca quinquenervia. Microorganisms, 2022, 10, 383.	3.6	5
2	Epidemic spread of smut fungi (Quambalaria) by sexual reproduction in a native pathosystem. European Journal of Plant Pathology, 2022, 163, 341-349.	1.7	1
3	Transcriptome Analysis of Eucalyptus grandis Implicates Brassinosteroid Signaling in Defense Against Myrtle Rust (Austropuccinia psidii). Frontiers in Forests and Global Change, 2021, 4, .	2.3	2
4	Plant architecture, growth and biomass allocation effects of the invasive pathogen myrtle rust (<i>Austropuccinia psidii</i>) on Australian Myrtaceae species after fire. Austral Ecology, 2020, 45, 177-186.	1.5	5
5	Changes in leaf chemistry and anatomy of Corymbia citriodora subsp. variegata (Myrtaceae) in response to native and exotic pathogens. Australasian Plant Pathology, 2020, 49, 641-653.	1.0	2
6	Effect of Austropuccinia psidii inoculum concentration on myrtle rust disease incidence and severity. Australasian Plant Pathology, 2020, 49, 239-243.	1.0	1
7	Symptom development and latent period of <i>Austropuccinia psidii</i> (myrtle rust) in relation to host species, temperature, and ontogenic resistance. Plant Pathology, 2020, 69, 484-494.	2.4	19
8	Does disease severity impact on plant foliar chemical and physical responses to two Corymbia citriodora subsp. variegata pathogens?. Industrial Crops and Products, 2020, 148, 112288.	5.2	4
9	Imminent Extinction of Australian Myrtaceae by Fungal Disease. Trends in Ecology and Evolution, 2020, 35, 554-557.	8.7	17
10	Direct and indirect community effects of the invasive plant pathogen Austropuccinia psidii (myrtle) Tj ETQq0 0 0	rgBT /Ove 2.4	erlock 10 Tf 5 12
11	Resistance of New Zealand Provenance <i>Leptospermum scoparium, Kunzea robusta, Kunzea linearis</i> , and <i>Metrosideros excelsa</i> to <i>Austropuccinia psidii</i> . Plant Disease, 2020, 104, 1771-1780.	1.4	12
12	Phylogenetic and population genetic analyses reveal three distinct lineages of the invasive brown root-rot pathogen, Phellinus noxius, and bioclimatic modeling predicts differences in associated climate niches. European Journal of Plant Pathology, 2020, 156, 751-766.	1.7	9
13	Fire and rust – the impact of Austropuccinia psidii (myrtle rust) on regeneration of Myrtaceae in coastal heath following wildfire. Southern Forests, 2020, 82, 280-291.	0.7	6
14	Independent QTL underlie resistance to the native pathogen Quambalaria pitereka and the exotic pathogen Austropuccinia psidii in Corymbia. Tree Genetics and Genomes, 2019, 15, 1.	1.6	11
15	Austropuccinia psidii on the move: survey based insights to its geographical distribution, host species, impacts and management in Australia. Biological Invasions, 2019, 21, 1215-1225.	2.4	18
16	Comparison of host susceptibilities to native and exotic pathogens provides evidence for pathogenâ€imposed selection in forest trees. New Phytologist, 2019, 221, 2261-2272.	7.3	19

17	Detecting myrtle rust (<i>Austropuccinia psidii</i>) on lemon myrtle trees using spectral signatures and machine learning. Plant Pathology, 2018, 67, 1114-1121.	2.4	36
18	Impacts of the invasive fungus <i>Austropuccinia psidii</i> (myrtle rust) on three Australian Myrtaceae species of coastal swamp woodland. Austral Ecology, 2018, 43, 56-68.	1.5	11

2

GEOFF PEGG

#	Article	IF	CITATIONS
19	Lessons from the Incursion of Myrtle Rust in Australia. Annual Review of Phytopathology, 2018, 56, 457-478.	7.8	59
20	Predicting impact of Austropuccinia psidii on populations of broad leaved Melaleuca species in Australia. Australasian Plant Pathology, 2018, 47, 421-430.	1.0	18
21	Aerial Mapping of Forests Affected by Pathogens Using UAVs, Hyperspectral Sensors, and Artificial Intelligence. Sensors, 2018, 18, 944.	3.8	98
22	First Report of Myrtle Rust Caused by <i>Austropuccinia psidii</i> on <i>Rhodomyrtus tomentosa</i> (Myrtaceae) from Singapore. Plant Disease, 2017, 101, 1676-1676.	1.4	18
23	Impact of Austropuccinia psidii (myrtle rust) on Myrtaceae-rich wet sclerophyll forests in south east Queensland. PLoS ONE, 2017, 12, e0188058.	2.5	54
24	Evidence for different QTL underlying the immune and hypersensitive responses of Eucalyptus globulus to the rust pathogen Puccinia psidii. Tree Genetics and Genomes, 2016, 12, 1.	1.6	50
25	Impact of the invasive rust Puccinia psidii (myrtle rust) on native Myrtaceae in natural ecosystems in Australia. Biological Invasions, 2016, 18, 127-144.	2.4	126
26	Risk assessment for <i>Puccinia psidii</i> becoming established in South Africa. Plant Pathology, 2015, 64, 1326-1335.	2.4	15
27	Screening <i>Eucalyptus cloeziana</i> and <i>E. argophloia</i> Populations for Resistance to <i>Puccinia psidii</i> . Plant Disease, 2015, 99, 71-79.	1.4	35
28	Screening <i>Corymbia</i> populations for resistance to <i>Puccinia psidii</i> . Plant Pathology, 2014, 63, 425-436.	2.4	39
29	<i>Puccinia psidii</i> in Queensland, Australia: disease symptoms, distribution and impact. Plant Pathology, 2014, 63, 1005-1021.	2.4	105
30	Ceratocystis species, including two new species associated with nitidulid beetles, on eucalypts in Australia. Antonie Van Leeuwenhoek, 2012, 101, 217-241.	1.7	29
31	Spread and development of quambalaria shoot blight in spotted gum plantations. Plant Pathology, 2011, 60, 1096-1106.	2.4	10
32	Variability in aggressiveness of <i>Quambalaria pitereka</i> isolates. Plant Pathology, 2011, 60, 1107-1117.	2.4	17
33	Variable resistance to Quambalaria pitereka in spotted gum reveal opportunities for disease screening. Australasian Plant Pathology, 2011, 40, 76-86.	1.0	29
34	Potential gains through selecting for resistance in spotted gum to Quambalaria pitereka. Australasian Plant Pathology, 2011, 40, 197-206.	1.0	3
35	Species within Mycosphaerellaceae and Teratosphaeriaceae from eucalypts in eastern Australia. Australasian Plant Pathology, 2011, 40, 366-384.	1.0	10
36	Ophiostoma species (Ophiostomatales, Ascomycota), including two new taxa on eucalypts in Australia. Australian Journal of Botany, 2011, 59, 283.	0.6	20

GEOFF PEGG

#	Article	IF	Citations
			CHAHONS
37	<i>Teratosphaeria pseudoeucalypti</i> , new cryptic species responsible for leaf blight of <i>Eucalyptus</i> in subtropical and tropical Australia. Plant Pathology, 2010, 59, 900-912.	2.4	26
38	Infection and disease development of <i>Quambalaria</i> spp. on <i>Corymbia</i> and <i>Eucalyptus</i> species. Plant Pathology, 2009, 58, 642-654.	2.4	24
39	<i>Quambalaria</i> species associated with plantation and native eucalypts in Australia. Plant Pathology, 2008, 57, 702-714.	2.4	35
40	Ceratocystis atroxsp. nov. associated withPhoracantha acanthocerainfestations onEucalyptus grandisin Australia. Australasian Plant Pathology, 2007, 36, 407.	1.0	24
41	Kirramyces viscidussp. nov., a new eucalypt pathogen from tropical Australia closely related to the serious leaf pathogen,Kirramyces destructans. Australasian Plant Pathology, 2007, 36, 478.	1.0	21
42	Phylogeny of the Quambalariaceae fam. nov., including important Eucalyptus pathogens in South Africa and Australia. Studies in Mycology, 2006, 55, 289-298.	7.2	78
43	Three new <i>Lasiodiplodia</i> spp. from the tropics, recognized based on DNA sequence comparisons and morphology. Mycologia, 2006, 98, 423-435.	1.9	61