List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2853687/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CRISPR/Cas9-based Genome Editing in Pseudomonas aeruginosa and Cytidine Deaminase-Mediated Base Editing in Pseudomonas Species. IScience, 2018, 6, 222-231.	1.9	142
2	MACBETH: Multiplex automated Corynebacterium glutamicum base editing method. Metabolic Engineering, 2018, 47, 200-210.	3.6	139
3	Metabolic engineering of Enterobacter cloacae for high-yield production of enantiopure (2 R ,3 R) Tj ETQq1 1 G).784314 rg 3.6	BT /Overlock
4	CRISPR-Cas9 and CRISPR-Assisted Cytidine Deaminase Enable Precise and Efficient Genome Editing in Klebsiella pneumoniae. Applied and Environmental Microbiology, 2018, 84, .	1.4	113
5	Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum. Microbial Cell Factories, 2017, 16, 205.	1.9	103
6	Engineering Corynebacterium glutamicum for methanol-dependent growth and glutamate production. Metabolic Engineering, 2018, 49, 220-231.	3.6	95
7	Production of 2,3-butanediol from corncob molasses, a waste by-product in xylitol production. Applied Microbiology and Biotechnology, 2010, 87, 965-970.	1.7	90
8	A newly isolated Bacillus licheniformisstrain thermophilically produces 2,3-butanediol, a platform and fuel bio-chemical. Biotechnology for Biofuels, 2013, 6, 123.	6.2	87
9	Biocatalytic production of (2S,3S)-2,3-butanediol from diacetyl using whole cells of engineered Escherichia coli. Bioresource Technology, 2012, 115, 111-116.	4.8	66
10	Production of (2S,3S)-2,3-butanediol and (3S)-acetoin from glucose using resting cells of Klebsiella pneumonia and Bacillus subtilis. Bioresource Technology, 2011, 102, 10741-10744.	4.8	63
11	Engineering of cofactor regeneration enhances (2S,3S)-2,3-butanediol production from diacetyl. Scientific Reports, 2013, 3, 2643.	1.6	63
12	Glycerol Dehydrogenase Plays a Dual Role in Glycerol Metabolism and 2,3-Butanediol Formation in Klebsiella pneumoniae. Journal of Biological Chemistry, 2014, 289, 6080-6090.	1.6	63
13	Co-utilization of glycerol and lignocellulosic hydrolysates enhances anaerobic 1,3-propanediol production by Clostridium diolis. Scientific Reports, 2016, 6, 19044.	1.6	57
14	Synthetic Methylotrophy: A Practical Solution for Methanol-Based Biomanufacturing. Trends in Biotechnology, 2020, 38, 650-666.	4.9	56
15	A Highly Efficient CRISPR-Cas9-Based Genome Engineering Platform in Acinetobacter baumannii to Understand the H2O2-Sensing Mechanism of OxyR. Cell Chemical Biology, 2019, 26, 1732-1742.e5.	2.5	55
16	Adaptive laboratory evolution enhances methanol tolerance and conversion in engineered Corynebacterium glutamicum. Communications Biology, 2020, 3, 217.	2.0	52
17	Enhancing the light-driven production of d-lactate by engineering cyanobacterium using a combinational strategy. Scientific Reports, 2015, 5, 9777.	1.6	49
18	A Novel Corynebacterium glutamicum <scp>l</scp> -Glutamate Exporter. Applied and Environmental Microbiology, 2018, 84, .	1.4	49

#	Article	IF	CITATIONS
19	Efficient Simultaneous Saccharification and Fermentation of Inulin to 2,3-Butanediol by Thermophilic Bacillus licheniformis ATCC 14580. Applied and Environmental Microbiology, 2014, 80, 6458-6464.	1.4	48
20	Production of (3S)-acetoin from diacetyl by using stereoselective NADPH-dependent carbonyl reductase and glucose dehydrogenase. Bioresource Technology, 2013, 137, 111-115.	4.8	46
21	Production of C3 platform chemicals from CO ₂ by genetically engineered cyanobacteria. Green Chemistry, 2015, 17, 3100-3110.	4.6	46
22	Coordination of metabolic pathways: Enhanced carbon conservation in 1,3-propanediol production by coupling with optically pure lactate biosynthesis. Metabolic Engineering, 2017, 41, 102-114.	3.6	46
23	In-situ generation of large numbers of genetic combinations for metabolic reprogramming via CRISPR-guided base editing. Nature Communications, 2021, 12, 678.	5.8	44
24	Expanding targeting scope, editing window, and base transition capability of base editing in <i>Corynebacterium glutamicum</i> . Biotechnology and Bioengineering, 2019, 116, 3016-3029.	1.7	42
25	Microbial Base Editing: A Powerful Emerging Technology for Microbial Genome Engineering. Trends in Biotechnology, 2021, 39, 165-180.	4.9	42
26	Efficient 2,3-Butanediol Production from Cassava Powder by a Crop-Biomass-Utilizer, Enterobacter cloacae subsp. dissolvens SDM. PLoS ONE, 2012, 7, e40442.	1.1	42
27	Metabolic engineering of Escherichia coli for production of (2S,3S)-butane-2,3-diol from glucose. Biotechnology for Biofuels, 2015, 8, 143.	6.2	41
28	Metabolic engineering of <i>Corynebacterium glutamicum</i> by synthetic small regulatory RNAs. Journal of Industrial Microbiology and Biotechnology, 2019, 46, 203-208.	1.4	39
29	Efficient bioproduction of 5-aminolevulinic acid, a promising biostimulant and nutrient, from renewable bioresources by engineered Corynebacterium glutamicum. Biotechnology for Biofuels, 2020, 13, 41.	6.2	39
30	CRISPR-assisted rational flux-tuning and arrayed CRISPRi screening of an l-proline exporter for l-proline hyperproduction. Nature Communications, 2022, 13, 891.	5.8	39
31	CRISPR-dCas9 Mediated Cytosine Deaminase Base Editing in <i>Bacillus subtilis</i> . ACS Synthetic Biology, 2020, 9, 1781-1789.	1.9	38
32	Switch of metabolic status: redirecting metabolic flux for acetoin production from glycerol by activating a silent glycerol catabolism pathway. Metabolic Engineering, 2017, 39, 90-101.	3.6	36
33	Enhancing 5â€aminolevulinic acid tolerance and production by engineering the antioxidant defense system of <i>Escherichia coli</i> . Biotechnology and Bioengineering, 2019, 116, 2018-2028.	1.7	36
34	Biological conversion of methanol by evolved Escherichia coli carrying a linear methanol assimilation pathway. Bioresources and Bioprocessing, 2017, 4, .	2.0	35
35	Efficient Multiplex Gene Repression by CRISPR-dCpf1 in Corynebacterium glutamicum. Frontiers in Bioengineering and Biotechnology, 2020, 8, 357.	2.0	33
36	Engineering Artificial Fusion Proteins for Enhanced Methanol Bioconversion. ChemBioChem, 2018, 19, 2465-2471.	1.3	30

#	Article	IF	CITATIONS
37	A photoautotrophic platform for the sustainable production of valuable plant natural products from CO ₂ . Green Chemistry, 2016, 18, 3537-3548.	4.6	26
38	Strategies for Developing CRISPRâ€Based Gene Editing Methods in Bacteria. Small Methods, 2020, 4, 1900560.	4.6	19
39	CRISPR/Cas13d-Mediated Microbial RNA Knockdown. Frontiers in Bioengineering and Biotechnology, 2020, 8, 856.	2.0	19
40	Genome Sequences of Two Thermophilic Bacillus licheniformis Strains, Efficient Producers of Platform Chemical 2,3-Butanediol. Journal of Bacteriology, 2012, 194, 4133-4134.	1.0	16
41	Isoleucyl-tRNA synthetase mutant based whole-cell biosensor for high-throughput selection of isoleucine overproducers. Biosensors and Bioelectronics, 2021, 172, 112783.	5.3	16
42	Genome Sequence of Bacillus cereus Strain A1, an Efficient Starch-Utilizing Producer of Hydrogen. Genome Announcements, 2014, 2, .	0.8	13
43	Comprehensive optimization of the metabolomic methodology for metabolite profiling of Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 2018, 102, 7113-7121.	1.7	13
44	Cytosine Base Editor (hA3A-BE3-NG)-Mediated Multiple Gene Editing for Pyramid Breeding in Pigs. Frontiers in Genetics, 2020, 11, 592623.	1.1	12
45	Engineering synthetic auxotrophs for growth-coupled directed protein evolution. Trends in Biotechnology, 2022, 40, 773-776.	4.9	12
46	Evaluation of Aspergillus niger Six Constitutive Strong Promoters by Fluorescent-Auxotrophic Selection Coupled with Flow Cytometry: A Case for Citric Acid Production. Journal of Fungi (Basel,) Tj ETQq0 0 0	rg B. Ђ/Ove	rlo ck 10 Tf 50
47	Genome Sequence of a Promising Hydrogen-Producing Facultative Anaerobic Bacterium, Brevundimonas naejangsanensis Strain B1. Genome Announcements, 2014, 2, .	0.8	10
48	Genome Sequence of Clostridium butyricum Strain DSM 10702, a Promising Producer of Biofuels and Biochemicals. Genome Announcements, 2013, 1, .	0.8	9
49	Promoting Lignin Valorization by Coping with Toxic C1 Byproducts. Trends in Biotechnology, 2021, 39, 331-335.	4.9	9
50	Genome Sequence of Klebsiella pneumoniae LZ, a Potential Platform Strain for 1,3-Propanediol Production. Journal of Bacteriology, 2012, 194, 4457-4458.	1.0	7
51	Genome Sequence of Lactobacillus curieae CCTCC M 2011381 ^T , a Novel Producer of Gamma-aminobutyric Acid. Genome Announcements, 2015, 3, .	0.8	7
52	Mutations in Peptidoglycan Synthesis Gene <i>ponA</i> Improve Electrotransformation Efficiency of <i>Corynebacterium glutamicum</i> ATCC 13869. Applied and Environmental Microbiology, 2018, 84, .	1.4	7
53	Genome Sequence of Clostridium diolis Strain DSM 15410, a Promising Natural Producer of 1,3-Propanediol. Genome Announcements, 2013, 1, .	0.8	6
54	Genome Sequence of <i>meso</i> -2,3-Butanediol-Producing Strain Serratia marcescens ATCC 14041. Genome Announcements, 2014, 2, .	0.8	6

#	ARTICLE	IF	CITATIONS
55	Transcriptome analysis reveals the roles of nitrogen metabolism and sedoheptulose bisphosphatase pathway in methanolâ€dependent growth of <i>Corynebacterium glutamicum</i> . Microbial Biotechnology, 2021, 14, 1797-1808.	2.0	6
56	Development of a Hyperosmotic Stress Inducible Gene Expression System by Engineering the MtrA/MtrB-Dependent NCgl1418 Promoter in Corynebacterium glutamicum. Frontiers in Microbiology, 2021, 12, 718511.	1.5	6
57	Genome Sequence of Klebsiella pneumoniae Strain ATCC 25955, an Oxygen-Insensitive Producer of 1,3-Propanediol. Genome Announcements, 2013, 1, .	0.8	3
58	Genome Sequence of Thermophilic Bacillus licheniformis Strain 3F-3, an Efficient Pentose-Utilizing Producer of 2,3-Butanediol. Genome Announcements, 2014, 2, .	0.8	3
59	Directed Evolution and Rational Design of Mechanosensitive Channel MscCG2 for Improved Glutamate Excretion Efficiency. Journal of Agricultural and Food Chemistry, 2021, 69, 15660-15669.	2.4	2
60	CRISPR/Cas9-mediated ssDNA Recombineering in Corynebacterium glutamicum. Bio-protocol, 2018, 8, e3038.	0.2	1
61	Editorial: Bioconversion and Biorefinery of C1 Compounds. Frontiers in Microbiology, 2021, 12, 778962.	1.5	1
62	Front Cover Image, Volume 116, Number 11, November 2019. Biotechnology and Bioengineering, 2019, 116, i.	1.7	0
63	Developing Synthetic Methylotrophs by Metabolic Engineering-Guided Adaptive Laboratory Evolution. Advances in Biochemical Engineering/Biotechnology, 2022, , 1.	0.6	0
64	Editorial: Engineering Corynebacterium glutamicum Chassis for Synthetic Biology, Biomanufacturing, and Bioremediation. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	0