Ivan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2853585/publications.pdf

Version: 2024-02-01

	1039406	996533
363	9	15
citations	h-index	g-index
56	56	175
docs citations	times ranked	citing authors
	citations 56	363 9 citations h-index 56 56

#	Article	IF	Citations
1	SNH Amidation of 5(6,7,8)-nitroquinoline N-oxides. Chemistry of Heterocyclic Compounds, 2022, 58, 235-242.	0.6	O
2	Meso-functionalization of calix[4] arene with 1,3,7-triazapyrene in the design of novel fluorophores with the dual target detection of Al3+ and Fe3+ cations. RSC Advances, 2021, 11, 6407-6414.	1.7	6
3	SNH-Arylamination of 1-methylquinolin-2(1H)-one Nitro Derivatives. Chemistry of Heterocyclic Compounds, 2021, 57, 166-174.	0.6	2
4	1,3,7-Triazapyrene-Based <i>ortho</i> -Carborane Fluorophores: Convenient Synthesis, Theoretical Studies, and Aggregation-Induced Emission Properties. Organometallics, 2021, 40, 2792-2807.	1.1	6
5	Synthesis of pyrido[2,3-a]phenazines by intramolecular cyclization of 7-arylamino-8-nitrosoquinolines. Chemistry of Heterocyclic Compounds, 2019, 55, 684-687.	0.6	0
6	SNH Amidation of nitroquinolines: synthesis of amides on the basis of nitro- and nitrosoquinolines. Chemistry of Heterocyclic Compounds, 2019, 55, 623-631.	0.6	5
7	Nucleophilic addition of amide anions to 1-methyl-5(6,7,8)-nitroquinolinium salts. Chemistry of Heterocyclic Compounds, 2019, 55, 739-747.	0.6	2
8	S N H Arylamination of Nitroquinolines: Access to Nitro and Nitroso Derivatives of Arylaminoquinolines. Chemistry of Heterocyclic Compounds, 2018, 54, 875-886.	0.6	6
9	Synthesis of Amides by Nucleophilic Substitution of Hydrogen in 3-Nitropyridine. Russian Journal of Organic Chemistry, 2018, 54, 867-872.	0.3	7
10	SN H Arylamination of 3-Nitropyridine: A Competitive Formation of 2-Arylamino-5-nitropyridines and 2-Arylamino-5-nitrosopyridines. Synthesis, 2018, 50, 3520-3530.	1.2	10
11	Ureas as a New Nucleophilic Reagents for S _N Ar Amination and Carbamoyl Amination Reactions in 1,3,7‶riazapyrene Series. Journal of Heterocyclic Chemistry, 2017, 54, 406-412.	1.4	8
12	Nucleophilic Addition of Amides to 10-Alkylacridinium Cations: A Case of Double N-Nucleophilicity of Some Monoamides. Synthesis, 2017, 49, 3710-3719.	1.2	1
13	S N H Alkyl carbamoyl amination of 3-nitropyridine: competitive synthesis of nitro- and nitrosopyridine derivatives. Chemistry of Heterocyclic Compounds, 2017, 53, 1207-1213.	0.6	5
14	Direct and facile synthesis of 9-aminoacridine and acridin-9-yl-ureas. Tetrahedron Letters, 2016, 57, 3608-3611.	0.7	8
15	Oxidative SNH amidation of acridine and tautomerism of N-(acridin-9-yl)benzamides. Chemistry of Heterocyclic Compounds, 2016, 52, 104-109.	0.6	6
16	Ureas as new nucleophilic reagents for SNH amination and carbamoyl amination reactions in the 1,3,7-triazapyrene series. Arkivoc, 2016, 2016, 58-70.	0.3	5
17	Synthesis of heterofunctional 1,3,7-triazapyrene derivatives by SNH and SNAr reactions. Russian Journal of Organic Chemistry, 2015, 51, 1438-1443.	0.3	1
18	Direct oxidative SNH amidation of 1,3,7-triazapyrene. Chemistry of Heterocyclic Compounds, 2015, 51, 170-175.	0.6	13

#	Article	IF	CITATIONS
19	Amides of 1,3,7-triazapyrene series: synthesis by nucleophilic substitution of alkoxy groups. Chemistry of Heterocyclic Compounds, 2015, 51, 334-339.	0.6	3
20	Urea in an aminodemethoxylation reaction of 6-methoxy-1,3,7-triazapyrenes. Chemistry of Heterocyclic Compounds, 2015, 51, 586-588.	0.6	5
21	Synthesis and Structure of Salts Derived from 6,8-Dialkoxy-1,3,7-Triazapyrenes. Chemistry of Heterocyclic Compounds, 2014, 49, 1777-1784.	0.6	1
22	S _N ^H ―and S _N ^{ipso} â€Arylamination of 1,3,7â€Triazapyrenes. European Journal of Organic Chemistry, 2014, 2014, 7675-7683.	1.2	14
23	Arylamination of 1,3,7-Triazapyrene. Chemistry of Heterocyclic Compounds, 2014, 50, 685-690.	0.6	5
24	S NH Arylation of 1,3,7-triazapyrenes in acidic aqueous solution. Chemistry of Heterocyclic Compounds, 2013, 49, 618-623.	0.6	8
25	1,3,7-Triazapyrene: the first case of hetarylation of benzene and its analogs. Chemistry of Heterocyclic Compounds, 2013, 49, 952-954.	0.6	6
26	Acid hydrolysis of amines and cleavage of 1,3,7-triazapyrene ethers. Russian Journal of Organic Chemistry, 2013, 49, 1199-1202.	0.3	5
27	Synthesis and cleavage of 1,3,7-triazapyrene ethers. Chemistry of Heterocyclic Compounds, 2013, 48, 1527-1532.	0.6	7
28	1,3-Dipolar Cycloaddition in a Series of 7-Oxoalkyl-1,3,7-Triazapyrenium salts. Chemistry of Heterocyclic Compounds, 2012, 48, 1064-1070.	0.6	3
29	Acid catalysis in the oxidative nucleophilic alkoxylation of 1,3,7-triazapyrenes. Russian Chemical Bulletin, 2011, 60, 1784-1785.	0.4	6
30	Oxidative amination and hydroxylation of 1,3,7-triazapyrenes in aqueous medium. Chemistry of Heterocyclic Compounds, 2011, 47, 114-116.	0.6	9
31	Transalkoxylation of 1,3,7-triazapyrene ethers. Chemistry of Heterocyclic Compounds, 2011, 47, 659-660.	0.6	3
32	An oxidative alkylamination of 1,3,7â€ŧriazapyrenes in the aqueous medium. Journal of Heterocyclic Chemistry, 2011, 48, 1206-1210.	1.4	18
33	7-alkyl-1,3,7-triazapyrenium salts: A rare case of double nucleophilic substitution. Russian Journal of General Chemistry, 2010, 80, 160-162.	0.3	2
34	Heterocyclic analogs of pleiadiene 76. Synthesis and tautomeric conversions of mono- and disubstituted perimidines with electron-withdrawing substituents in the naphthalene fragment. Chemistry of Heterocyclic Compounds, 2010, 46, 307-315.	0.6	4
35	Characteristics of the oxidative hydroxylation reaction of 7-alkyl-1,3,7-triazapyrenium salts. Chemistry of Heterocyclic Compounds, 2010, 46, 473-477.	0.6	1
36	Oxidative S N H-alkoxylation of 1,3,7-triazapyrenes. Chemistry of Heterocyclic Compounds, 2010, 46, 636-638.	0.6	9

#	Article	IF	Citations
37	Novel approach to the synthesis of 1,3-diazapyrenes. Chemistry of Heterocyclic Compounds, 2009, 45, 66-69.	0.6	7
38	Synthesis and hydroxylation of 1-alkyl- and 7-alkyl- 1,3,7-triazapyrenium salts. Chemistry of Heterocyclic Compounds, 2009, 45, 580-586.	0.6	8
39	Unusual reaction of 7-methyl-1,3,7-triazapyrenium salts with aqueous K3[Fe(CN)6] solution. Chemistry of Heterocyclic Compounds, 2009, 45, 619-620.	0.6	3
40	Synthesis of 2,3-dihydroperimidine ketones. Chemistry of Heterocyclic Compounds, 2009, 45, 721-725.	0.6	5
41	7-alkyl-1,3,7-triazapyrenium salts: Rare event of oxidative hydroxylation under the conditions of acid catalysis. Russian Journal of Organic Chemistry, 2009, 45, 1736-1737.	0.3	4
42	Reaction of $6(7)$ -acyl-and $6(7)$ -formylperimidines with $1,3,5$ -triazines in poly-phosphoric acid. Chemistry of Heterocyclic Compounds, 2008, 44, 868-871.	0.6	7
43	Unexpected reaction of 1,8-naphthylenediamine and perimidines with 1,3,5-triazine in the presence of benzonitrile in polyphosphoric acid. Chemistry of Heterocyclic Compounds, 2008, 44, 891-892.	0.6	8
44	Synthesis of aza-and polyazapyrenes (Review). Chemistry of Heterocyclic Compounds, 2008, 44, 1311-1327.	0.6	15
45	Formylation and acetylation of 2-ethoxynaphthalene with 1,3,5-triazines in polyphosphoric acid. Russian Chemical Bulletin, 2008, 57, 215-216.	0.4	1
46	Synthesis of 1,3,7-triazapyrene and 1,2,3,7-tetraazapyrene derivatives as a result of anomalous Hoesch reaction. Russian Chemical Bulletin, 2008, 57, 217-218.	0.4	6
47	A new method for [c,d]pyridine peri-annelation: synthesis of azapyrenes from phenalenes and their dihydro derivatives. Tetrahedron Letters, 2008, 49, 707-709.	0.7	51
48	Unexpected result of reaction of 1,8-naphtylenediamine with 1,3-dicarbonyl compounds in polyphosphoric acid. Russian Journal of General Chemistry, 2008, 78, 2169-2170.	0.3	1
49	Synthesis of 1,3-diazapyrenes by vinylformylation of perimidines. Russian Journal of General Chemistry, 2007, 77, 1650-1651.	0.3	6
50	Formylation of perimidine derivatives in a system 1,3,5-triazine-polyphosphoric acid. Russian Journal of Organic Chemistry, 2007, 43, 1579-1580.	0.3	11
51	1,3,7-Triazapyrenes: the unexpected products of the reaction of 1,8-diaminonaphthalene with 1,3,5-triazines in polyphosphoric acid. Russian Chemical Bulletin, 2007, 56, 2354-2355.	0.4	7
52	Resonance-stabilized α-naphthylmethyl carbocations and spiro compounds based thereon: VII. Transformations of α-naphthylmethyl carbocations stabilized by one electron-donor group or peri-fused heteroring. Russian Journal of Organic Chemistry, 2006, 42, 338-348.	0.3	5
53	Heterocyclic Analogs of Pleiadiene: LXXIV. peri-Cyclizations in the Perimidine Series. Synthesis of 1,3-Diazapyrene Derivatives. Russian Journal of Organic Chemistry, 2004, 40, 895-901.	0.3	10
54	2-Trifluoromethylperimidines with electron-withdrawing groups at the 6(7)-position: a case of extremely hindered annular prototropy. Mendeleev Communications, 2000, 10, 178-180.	0.6	8