Bansi D Malhotra

List of Publications by Citations

Source: https://exaly.com/author-pdf/2853350/bansi-d-malhotra-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

19,458 340 74 122 h-index g-index citations papers 6.99 21,241 5.7 354 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
340	Application of conducting polymers to biosensors. <i>Biosensors and Bioelectronics</i> , 2002 , 17, 345-59	11.8	1296
339	Mediated biosensors. <i>Biosensors and Bioelectronics</i> , 2002 , 17, 441-56	11.8	601
338	Nanostructured metal oxide-based biosensors. NPG Asia Materials, 2011 , 3, 17-24	10.3	500
337	Recent advances in polyaniline based biosensors. <i>Biosensors and Bioelectronics</i> , 2011 , 26, 2811-21	11.8	386
336	Iron oxide nanoparticles-chitosan composite based glucose biosensor. <i>Biosensors and Bioelectronics</i> , 2008 , 24, 676-83	11.8	376
335	Organic-inorganic hybrid nanocomposite-based gas sensors for environmental monitoring. <i>Chemical Reviews</i> , 2015 , 115, 4571-606	68.1	341
334	Prospects of conducting polymers in biosensors. <i>Analytica Chimica Acta</i> , 2006 , 578, 59-74	6.6	318
333	Glucose Biosensor Based on a Sol-Gel-Derived Platform. <i>Analytical Chemistry</i> , 1994 , 66, 3139-3144	7.8	232
332	Prospects of conducting polymers in molecular electronics. <i>Current Applied Physics</i> , 2003 , 3, 293-305	2.6	229
331	Zinc oxide nanoparticles-chitosan composite film for cholesterol biosensor. <i>Analytica Chimica Acta</i> , 2008 , 616, 207-13	6.6	217
330	Application of thiolated gold nanoparticles for the enhancement of glucose oxidase activity. <i>Langmuir</i> , 2007 , 23, 3333-7	4	214
329	Cholesterol biosensor based on rf sputtered zinc oxide nanoporous thin film. <i>Applied Physics Letters</i> , 2007 , 91, 063901	3.4	210
328	Biosensors for clinical diagnostics industry. Sensors and Actuators B: Chemical, 2003, 91, 117-127	8.5	209
327	Recent advances in cholesterol biosensor. <i>Biosensors and Bioelectronics</i> , 2008 , 23, 1083-100	11.8	197
326	Solgel derived nanoporous cerium oxide film for application to cholesterol biosensor. <i>Electrochemistry Communications</i> , 2008 , 10, 1246-1249	5.1	182
325	Recent advances in mycotoxins detection. <i>Biosensors and Bioelectronics</i> , 2016 , 81, 532-545	11.8	178
324	Iron oxide-chitosan nanobiocomposite for urea sensor. <i>Sensors and Actuators B: Chemical</i> , 2009 , 138, 572-580	8.5	175

(2009-2009)

323	Recent advances in self-assembled monolayers based biomolecular electronic devices. <i>Biosensors and Bioelectronics</i> , 2009 , 24, 2810-7	11.8	175
322	Cholesterol biosensor based on cholesterol esterase, cholesterol oxidase and peroxidase immobilized onto conducting polyaniline films. <i>Sensors and Actuators B: Chemical</i> , 2006 , 115, 534-541	8.5	169
321	An impedimetric biosensor based on electrophoretically assembled ZnO nanorods and carboxylated graphene nanoflakes on an Indium tin oxide electrode for Idetection of the DNA of Escherichia coli O157:H7. <i>Mikrochimica Acta</i> , 2019 , 187, 1	5.8	159
320	Recent developments in urea biosensors. <i>Biochemical Engineering Journal</i> , 2009 , 44, 42-52	4.2	155
319	Recent advances in carbon based nanosystems for cancer theranostics. <i>Biomaterials Science</i> , 2017 , 5, 901-952	7.4	139
318	Prospects of Nanomaterials in Biosensors. <i>Analytical Letters</i> , 2008 , 41, 159-209	2.2	137
317	Electrophoretically deposited reduced graphene oxide platform for food toxin detection. <i>Nanoscale</i> , 2013 , 5, 3043-51	7.7	136
316	Amperometric cholesterol biosensor based on immobilized cholesterol esterase and cholesterol oxidase on conducting polypyrrole films. <i>Analytica Chimica Acta</i> , 2004 , 502, 229-234	6.6	130
315	Metal/semiconductive polymer Schottky device. <i>Applied Physics Letters</i> , 1991 , 58, 51-52	3.4	126
314	Polyaniline-carbon nanotube composite film for cholesterol biosensor. <i>Analytical Biochemistry</i> , 2008 , 383, 194-9	3.1	125
313	Microfluidics Based Point-of-Care Diagnostics. <i>Biotechnology Journal</i> , 2018 , 13, 1700047	5.6	125
312	Nanostructured zirconia decorated reduced graphene oxide based efficient biosensing platform for non-invasive oral cancer detection. <i>Biosensors and Bioelectronics</i> , 2016 , 78, 497-504	11.8	122
311	Synthesis and characterization of poly(aniline-co-o-anisidine). A processable conducting copolymer. <i>Macromolecules</i> , 1993 , 26, 3190-3193	5.5	122
310	Biosensors for pathogen detection: A smart approach towards clinical diagnosis. <i>Sensors and Actuators B: Chemical</i> , 2014 , 197, 385-404	8.5	120
309	Antibody immobilized cysteamine functionalized-gold nanoparticles for aflatoxin detection. <i>Thin Solid Films</i> , 2010 , 519, 1213-1218	2.2	120
308	Sol-gel derived nanostructured cerium oxide film for glucose sensor. <i>Applied Physics Letters</i> , 2008 , 92, 263901	3.4	119
307	Co-immobilization of cholesterol oxidase and horseradish peroxidase in a solgel film. <i>Analytica Chimica Acta</i> , 2000 , 414, 43-50	6.6	117
306	Hydrogen peroxide sensor based on horseradish peroxidase immobilized nanostructured cerium oxide film. <i>Journal of Biotechnology</i> , 2009 , 142, 179-84	3.7	116

305	Chitosanfron oxide nanobiocomposite based immunosensor for ochratoxin-A. <i>Electrochemistry Communications</i> , 2008 , 10, 1364-1368	5.1	115
304	Reduced graphene oxide modified smart conducting paper for cancer biosensor. <i>Biosensors and Bioelectronics</i> , 2015 , 73, 114-122	11.8	114
303	Covalent immobilization of cholesterol esterase and cholesterol oxidase on polyaniline films for application to cholesterol biosensor. <i>Analytica Chimica Acta</i> , 2006 , 568, 126-32	6.6	114
302	Microfluidic-integrated biosensors: prospects for point-of-care diagnostics. <i>Biotechnology Journal</i> , 2013 , 8, 1267-79	5.6	113
301	Preparation of polyaniline/multiwalled carbon nanotube composite by novel electrophoretic route. <i>Carbon</i> , 2008 , 46, 1727-1735	10.4	112
300	Nanostructured zinc oxide platform for mycotoxin detection. <i>Bioelectrochemistry</i> , 2010 , 77, 75-81	5.6	111
299	Highly sensitive biofunctionalized mesoporous electrospun TiO(2) nanofiber based interface for biosensing. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 100 pt 100	9.5	109
298	Multi-walled carbon nanotubes/solgel-derived silica/chitosan nanobiocomposite for total cholesterol sensor. <i>Sensors and Actuators B: Chemical</i> , 2009 , 137, 727-735	8.5	109
297	Carboxylated multiwalled carbon nanotubes based biosensor for aflatoxin detection. <i>Sensors and Actuators B: Chemical</i> , 2013 , 185, 258-264	8.5	106
296	Application of electrochemically prepared polypyrrole-polyvinyl sulphonate films to DNA biosensor. <i>Biosensors and Bioelectronics</i> , 2006 , 21, 1777-83	11.8	106
295	Cholesterol biosensor based on electrophoretically deposited conducting polymer film derived from nano-structured polyaniline colloidal suspension. <i>Analytica Chimica Acta</i> , 2007 , 602, 244-51	6.6	105
294	Recent trends in biosensors. Current Applied Physics, 2005, 5, 92-97	2.6	105
293	Immobilization of cholesterol oxidase and potassium ferricyanide on dodecylbenzene sulfonate ion-doped polypyrrole film. <i>Journal of Applied Polymer Science</i> , 2001 , 82, 3486-3491	2.9	104
292	Nanoporous cerium oxide thin film for glucose biosensor. <i>Biosensors and Bioelectronics</i> , 2009 , 24, 2040-	· 5 11.8	103
291	Co-immobilization of lactate oxidase and lactate dehydrogenase on conducting polyaniline films. <i>Analytica Chimica Acta</i> , 2000 , 407, 97-103	6.6	101
290	Cell-based biosensors: Recent trends, challenges and future perspectives. <i>Biosensors and Bioelectronics</i> , 2019 , 141, 111435	11.8	99
289	Cholesterol biosensor based on N-(2-aminoethyl)-3-aminopropyl-trimethoxysilane self-assembled monolayer. <i>Analytical Biochemistry</i> , 2007 , 363, 210-8	3.1	95
288	A nanostructured cerium oxide film-based immunosensor for mycotoxin detection. <i>Nanotechnology</i> , 2009 , 20, 055105	3.4	94

(2001-2009)

287	Nanostructured zinc oxide platform for cholesterol sensor. <i>Applied Physics Letters</i> , 2009 , 94, 143901	3.4	91
286	Polyaniline Langmuir-Blodgett film based aptasensor for ochratoxin A detection. <i>Biosensors and Bioelectronics</i> , 2011 , 26, 4006-11	11.8	90
285	Zinc oxide-chitosan nanobiocomposite for urea sensor. <i>Applied Physics Letters</i> , 2008 , 93, 163903	3.4	90
284	Covalent immobilization of glucose oxidase to poly(O-amino benzoic acid) for application to glucose biosensor. <i>Journal of Applied Polymer Science</i> , 2000 , 78, 662-667	2.9	90
283	Nanostructured nickel oxide-chitosan film for application to cholesterol sensor. <i>Applied Physics Letters</i> , 2011 , 98, 123702	3.4	89
282	Polyaniline Langmuir-Blodgett film based cholesterol biosensor. <i>Langmuir</i> , 2007 , 23, 13188-92	4	89
281	Nanostructured zinc oxide film for urea sensor. <i>Materials Letters</i> , 2009 , 63, 2473-2475	3.3	88
280	Electrochemical Cholesterol Sensor Based on Tin Oxide-Chitosan Nanobiocomposite Film. <i>Electroanalysis</i> , 2009 , 21, 965-972	3	88
279	Biofunctionalized Nanostructured Zirconia for Biomedical Application: A Smart Approach for Oral Cancer Detection. <i>Advanced Science</i> , 2015 , 2, 1500048	13.6	87
278	Anti-epidermal growth factor receptor conjugated mesoporous zinc oxide nanofibers for breast cancer diagnostics. <i>Nanoscale</i> , 2015 , 7, 7234-45	7.7	87
277	Immobilization of lactate dehydrogenase on electrochemically prepared polypyrroleBolyvinylsulphonate composite films for application to lactate biosensors. <i>Electrochimica Acta</i> , 2001 , 46, 723-729	6.7	85
276	Preparation, characterization and application of polyaniline nanospheres to biosensing. <i>Nanoscale</i> , 2010 , 2, 747-54	7.7	84
275	Recent developments in bio-molecular electronics techniques for food pathogens. <i>Analytica Chimica Acta</i> , 2006 , 568, 259-74	6.6	82
274	Coimmobilization of urease and glutamate dehydrogenase in electrochemically prepared polypyrrole-polyvinyl sulfonate films. <i>Applied Biochemistry and Biotechnology</i> , 2001 , 96, 249-57	3.2	81
273	Fundamentals and application of ordered molecular assemblies to affinity biosensing. <i>Chemical Society Reviews</i> , 2012 , 41, 1363-402	58.5	80
272	Immobilization of urease on poly(N-vinyl carbazole)/stearic acid Langmuir-Blodgett films for application to urea biosensor. <i>Biosensors and Bioelectronics</i> , 2002 , 17, 697-703	11.8	80
271	Improved performance of polyaniline-uricase biosensor. <i>Analytica Chimica Acta</i> , 2007 , 594, 17-23	6.6	77
270	Synthesis and characterization of a copolymer: Poly(aniline-co-fluoroaniline). <i>Journal of Applied Polymer Science</i> , 2001 , 81, 1460-1466	2.9	77

269	Escherichia coli genosensor based on polyaniline. <i>Analytical Chemistry</i> , 2007 , 79, 6152-8	7.8	76
268	Application of octadecanethiol self-assembled monolayer to cholesterol biosensor based on surface plasmon resonance technique. <i>Talanta</i> , 2006 , 69, 918-26	6.2	76
267	Polyaniline/Polymeric acid composite, a novel conducting rubber. <i>Journal of Applied Polymer Science</i> , 1990 , 40, 1049-1052	2.9	75
266	Nanomaterial-based biosensors for food toxin detection. <i>Applied Biochemistry and Biotechnology</i> , 2014 , 174, 880-96	3.2	73
265	Poly-(3-hexylthiophene) self-assembled monolayer based cholesterol biosensor using surface plasmon resonance technique. <i>Biosensors and Bioelectronics</i> , 2007 , 22, 2516-24	11.8	73
264	Nanostructured cerium oxide film for triglyceride sensor. <i>Sensors and Actuators B: Chemical</i> , 2009 , 141, 551-556	8.5	72
263	Ultrasensitive DNA hybridization biosensor based on polyaniline. <i>Biosensors and Bioelectronics</i> , 2007 , 23, 613-20	11.8	72
262	Langmuir B lodgett films of poly(3-dodecyl thiophene) for application to glucose biosensor. <i>Sensors and Actuators B: Chemical</i> , 2002 , 86, 42-48	8.5	72
261	Highly sensitive electrochemical immunosensor based on graphene-wrapped copper oxide-cysteine hierarchical structure for detection of pathogenic bacteria. <i>Sensors and Actuators B: Chemical</i> , 2017 , 238, 1060-1069	8.5	71
260	Electrochemical Growth of Polyaniline in Porous Sol © el Films. <i>Chemistry of Materials</i> , 1996 , 8, 822-824	9.6	71
259	Nucleic acid sensor for M. tuberculosis detection based on surface plasmon resonance. <i>Analyst, The</i> , 2008 , 133, 1587-92	5	70
258	Highly efficient bienzyme functionalized nanocomposite-based microfluidics biosensor platform for biomedical application. <i>Scientific Reports</i> , 2013 , 3, 2661	4.9	69
257	Electrochromic properties of polycarbazole films. <i>Polymer</i> , 1997 , 38, 1625-1629	3.9	68
256	Characteristics of aqueous polycarbazole batteries. <i>Journal of Applied Polymer Science</i> , 1999 , 74, 145-1	5Q .9	68
255	ReviewTextile Based Chemical and Physical Sensors for Healthcare Monitoring. <i>Journal of the Electrochemical Society</i> , 2020 , 167, 037546	3.9	67
254	Electrochemical DNA sensor for Neisseria meningitidis detection. <i>Biosensors and Bioelectronics</i> , 2010 , 25, 2586-91	11.8	67
253	Polyaniline based nucleic acid sensor. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 4808-16	3.4	67
252	A Novel Protocol to Entrap Active Urease in a Tetraethoxysilane-Derived Sol-Gel Thin-Film Architecture. <i>Chemistry of Materials</i> , 1994 , 6, 1596-1598	9.6	67

(2009-2015)

251	A novel electrochemical piezoelectric label free immunosensor for aflatoxin B1 detection in groundnut. <i>Food Control</i> , 2015 , 52, 60-70	6.2	66
250	Vacuum-deposited metal/polyaniline Schottky device. <i>Applied Physics Letters</i> , 1992 , 61, 1219-1221	3.4	66
249	Iron oxide-chitosan hybrid nanobiocomposite based nucleic acid sensor for pyrethroid detection. <i>Biochemical Engineering Journal</i> , 2009 , 46, 132-140	4.2	65
248	Zirconia based nucleic acid sensor for Mycobacterium tuberculosis detection. <i>Applied Physics Letters</i> , 2010 , 96, 133703	3.4	64
247	Application of polyaniline-Langmuir-Blodgett films as a glucose biosensor. <i>Materials Science and Engineering C</i> , 1995 , 3, 159-163	8.3	64
246	Electrochemical paper based cancer biosensor using iron oxide nanoparticles decorated PEDOT:PSS. <i>Analytica Chimica Acta</i> , 2019 , 1056, 135-145	6.6	64
245	Lipid-lipid interactions in aminated reduced graphene oxide interface for biosensing application. <i>Langmuir</i> , 2014 , 30, 4192-201	4	63
244	A novel ternary NiFe2O4/CuO/FeO-chitosan nanocomposite as a cholesterol biosensor. <i>Process Biochemistry</i> , 2012 , 47, 2189-2198	4.8	63
243	Immobilization of cholesterol esterase and cholesterol oxidase onto sol-gel films for application to cholesterol biosensor. <i>Analytica Chimica Acta</i> , 2007 , 582, 335-43	6.6	63
242	Highly sensitive protein functionalized nanostructured hafnium oxide based biosensing platform for non-invasive oral cancer detection. <i>Sensors and Actuators B: Chemical</i> , 2016 , 235, 1-10	8.5	63
241	Chitosan encapsulated quantum dots platform for leukemia detection. <i>Biosensors and Bioelectronics</i> , 2012 , 38, 107-13	11.8	60
240	Prospects of nanomaterials-enabled biosensors for COVID-19 detection. <i>Science of the Total Environment</i> , 2021 , 754, 142363	10.2	59
239	Ring like self assembled Ni nanoparticles based biosensor for food toxin detection. <i>Applied Physics Letters</i> , 2012 , 100, 093702	3.4	58
238	Chitosan-iron oxide nano-composite platform for mismatch-discriminating DNA hybridization for Neisseria gonorrhoeae detection causing sexually transmitted disease. <i>Biosensors and Bioelectronics</i> , 2011 , 26, 2967-74	11.8	57
237	STD sensor based on nucleic acid functionalized nanostructured polyaniline. <i>Biosensors and Bioelectronics</i> , 2009 , 24, 2232-8	11.8	57
236	Application of nanostructured ZnO films for electrochemical DNA biosensor. <i>Thin Solid Films</i> , 2010 , 519, 1196-1201	2.2	57
235	A highly efficient microfluidic nano biochip based on nanostructured nickel oxide. <i>Nanoscale</i> , 2013 , 5, 2883-91	7.7	56
234	Cerium oxide-chitosan based nanobiocomposite for food borne mycotoxin detection. <i>Applied Physics Letters</i> , 2009 , 95, 173703	3.4	56

233	Polypyrrole-polyvinyl sulphonate film based disposable nucleic acid biosensor. <i>Analytica Chimica Acta</i> , 2007 , 589, 6-13	6.6	55
232	Langmuir-Blodgett films of processable polyaniline. <i>The Journal of Physical Chemistry</i> , 1993 , 97, 11580-	11582	55
231	Mediator-free microfluidics biosensor based on titanialirconia nanocomposite for urea detection. <i>RSC Advances</i> , 2013 , 3, 228-235	3.7	54
230	Metal oxidethitosan based nanocomposite for cholesterol biosensor. <i>Thin Solid Films</i> , 2009 , 518, 614-6	2 0 .2	54
229	Protein functionalized carbon nanotubes-based smart lab-on-a-chip. <i>ACS Applied Materials & amp; Interfaces</i> , 2015 , 7, 5837-46	9.5	53
228	Electrophoretic fabrication of chitosan-zirconium-oxide nanobiocomposite platform for nucleic acid detection. <i>Biomacromolecules</i> , 2011 , 12, 540-7	6.9	53
227	Cholesterol biosensor based on amino-undecanethiol self-assembled monolayer using surface plasmon resonance technique. <i>Langmuir</i> , 2007 , 23, 7398-403	4	53
226	Lactose biosensor based on Langmuir-Blodgett films of poly(3-hexyl thiophene). <i>Biosensors and Bioelectronics</i> , 2004 , 20, 651-7	11.8	53
225	Highly sensitive porous carbon and metal/carbon conducting nanofiber based enzymatic biosensors for triglyceride detection. <i>Sensors and Actuators B: Chemical</i> , 2017 , 246, 202-214	8.5	52
224	Graphene oxide-based biosensor for food toxin detection. <i>Applied Biochemistry and Biotechnology</i> , 2014 , 174, 960-70	3.2	51
223	Highly Efficient Bienzyme Functionalized Biocompatible Nanostructured Nickel Ferrite©hitosan Nanocomposite Platform for Biomedical Application. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 8491-8	502 502	51
222	Molecularly imprinted polyaniline film for ascorbic acid detection. <i>Journal of Molecular Recognition</i> , 2011 , 24, 700-6	2.6	50
221	Polyaniline nanotubes for impedimetric triglyceride detection. <i>Electrochemistry Communications</i> , 2009 , 11, 1482-1486	5.1	50
220	A highly efficient rare earth metal oxide nanorods based platform for aflatoxin detection. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 4493-4503	7.3	49
219	Nanoengineered cellulosic biohydrogen production via dark fermentation: A novel approach. <i>Biotechnology Advances</i> , 2019 , 37, 107384	17.8	48
218	Synthesis of optically active silica-coated NdF3 core-shell nanoparticles. <i>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy</i> , 2012 , 86, 432-6	4.4	48
217	Bienzyme-functionalized monodispersed biocompatible cuprous oxide/chitosan nanocomposite platform for biomedical application. <i>Journal of Physical Chemistry B</i> , 2013 , 117, 141-52	3.4	48
216	Sol-gel derived nano-structured zinc oxide film for sexually transmitted disease sensor. <i>Analyst, The</i> , 2009 , 134, 997-1002	5	48

(2012-1989)

215	Poly-haphthalene oxide-pyrrole: A new electro-chemically-generated conducting polymer. <i>Synthetic Metals</i> , 1989 , 31, 155-162	3.6	48
214	Recent studies of heterocyclic and aromatic conducting polymers. <i>Progress in Polymer Science</i> , 1986 , 12, 179-218	29.6	48
213	Label-free piezoelectric immunosensor decorated with gold nanoparticles: Kinetic analysis and biosensing application. <i>Sensors and Actuators B: Chemical</i> , 2016 , 222, 804-814	8.5	47
212	Nanostructured zirconium oxide based genosensor for Escherichia coli detection. <i>Electrochemistry Communications</i> , 2009 , 11, 2272-2277	5.1	47
211	Immobilization of single stranded DNA probe onto polypyrrole-polyvinyl sulfonate for application to DNA hybridization biosensor. <i>Sensors and Actuators B: Chemical</i> , 2007 , 126, 655-663	8.5	46
210	Nanobiocomposite platform based on polyaniline-iron oxide-carbon nanotubes for bacterial detection. <i>Bioelectrochemistry</i> , 2012 , 86, 30-7	5.6	45
209	Protein conjugated carboxylated gold@reduced graphene oxide for aflatoxin B1 detection. <i>RSC Advances</i> , 2015 , 5, 5406-5414	3.7	44
208	A dual enzyme functionalized nanostructured thulium oxide based interface for biomedical application. <i>Nanoscale</i> , 2014 , 6, 1195-208	7.7	44
207	Characterization of electrochemically synthesized poly(2-fluoroaniline) film and its application to glucose biosensor. <i>Current Applied Physics</i> , 2003 , 3, 239-245	2.6	44
206	Immobilization of Lactate Dehydrogenase on Electrochemically Prepared Polyaniline Films. <i>Electroanalysis</i> , 1999 , 11, 450-452	3	44
205	A solution processed carbon nanotube modified conducting paper sensor for cancer detection. Journal of Materials Chemistry B, 2015 , 3, 9305-9314	7.3	43
204	Fabrication of sensitive bioelectrode based on atomically thin CVD grown graphene for cancer biomarker detection. <i>Biosensors and Bioelectronics</i> , 2018 , 105, 173-181	11.8	43
203	Microporous Nanocomposite Enabled Microfluidic Biochip for Cardiac Biomarker Detection. <i>ACS Applied Materials & Detection and Section ACS Applied Materials & Detection ACS Applied ACS Applied Materials & Detection ACS Applied Materials & Detection</i>	9.5	43
202	Nanostructured Iron Oxide Platform for Impedimetric Cholesterol Detection. <i>Electroanalysis</i> , 2010 , 22, 1045-1055	3	43
201	Polyaniline/Single-Walled Carbon Nanotubes Composite Based Triglyceride Biosensor. <i>Electroanalysis</i> , 2010 , 22, 2683-2693	3	42
200	Langmuir B lodgett film based biosensor for estimation of galactose in milk. <i>Electrochimica Acta</i> , 2004 , 49, 2479-2485	6.7	42
199	Mesoporous Few-Layer Graphene Platform for Affinity Biosensing Application. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 7646-56	9.5	41
198	Nanopatterned cadmium selenide Langmuir-Blodgett platform for leukemia detection. <i>Analytical Chemistry</i> , 2012 , 84, 3082-9	7.8	41

197	Cholesterol biosensor based on electrochemically prepared polyaniline conducting polymer film in presence of a nonionic surfactant. <i>Journal of Polymer Research</i> , 2009 , 16, 363-373	2.7	41
196	Application of electrochemically prepared poly-N-methylpyrrole-p-toluene sulphonate films to cholesterol biosensor. <i>Sensors and Actuators B: Chemical</i> , 2007 , 123, 829-839	8.5	39
195	Improved electrochemical nucleic acid biosensor based on polyaniline-polyvinyl sulphonate. <i>Electrochimica Acta</i> , 2008 , 53, 4344-4350	6.7	39
194	Some recent studies on metal/polyaniline schottky devices. <i>Journal of Applied Polymer Science</i> , 1992 , 44, 911-915	2.9	39
193	Nanostructured anatase-titanium dioxide based platform for application to microfluidics cholesterol biosensor. <i>Applied Physics Letters</i> , 2012 , 101, 084105	3.4	38
192	An amperomertic uric acid biosensor based on immobilization of uricase onto polyaniline-multiwalled carbon nanotube composite film. <i>Artificial Cells, Blood Substitutes, and Biotechnology</i> , 2010 , 38, 178-85		38
191	CtrA gene based electrochemical DNA sensor for detection of meningitis. <i>Electrochemistry Communications</i> , 2009 , 11, 969-973	5.1	38
190	Electrical properties of metal (indium)/polyaniline Schottky devices. <i>Journal of Applied Polymer Science</i> , 1997 , 65, 2745-2748	2.9	38
189	DNA entrapped polypyrrole-polyvinyl sulfonate film for application to electrochemical biosensor. <i>Analytical Biochemistry</i> , 2007 , 366, 71-9	3.1	38
188	Self-assembled monolayer for toxicant detection using nucleic acid sensor based on surface plasmon resonance technique. <i>Biomedical Microdevices</i> , 2008 , 10, 757-67	3.7	38
187	Molecularly imprinted polyaniline-polyvinyl sulphonic acid composite based sensor for para-nitrophenol detection. <i>Analytica Chimica Acta</i> , 2013 , 777, 63-71	6.6	37
186	Optical and structural properties of nanostructured CeO2:Tb3+ film. <i>Journal of Alloys and Compounds</i> , 2011 , 509, 262-265	5.7	37
185	Poly-3-hexyl thiophene Langmuir-Blodgett films for application to glucose biosensor. <i>Biotechnology and Bioengineering</i> , 2004 , 85, 277-82	4.9	37
184	Effect of Brownian motion on reduced agglomeration of nanostructured metal oxide towards development of efficient cancer biosensor. <i>Biosensors and Bioelectronics</i> , 2018 , 102, 247-255	11.8	37
183	Amine-Functionalized MoO@RGO Nanohybrid-Based Biosensor for Breast Cancer Detection <i>ACS Applied Bio Materials</i> , 2019 , 2, 5366-5378	4.1	36
182	Biofunctionalized tungsten trioxide-reduced graphene oxide nanocomposites for sensitive electrochemical immunosensing of cardiac biomarker. <i>Journal of Alloys and Compounds</i> , 2018 , 763, 102-	-1517	36
181	Electrospun functional micro/nanochannels embedded in porous carbon electrodes for microfluidic biosensing. <i>Sensors and Actuators B: Chemical</i> , 2016 , 229, 82-91	8.5	36
180	Nanomaterials in Biosensors: Fundamentals and Applications 2018 , 1-74		36

179	Electrophoretically deposited CdS quantum dots based electrode for biosensor application. <i>Journal of Materials Chemistry</i> , 2012 , 22, 4970	36
178	Polyaniline/carbon nanotubes platform for sexually transmitted disease detection. <i>Journal of Molecular Recognition</i> , 2010 , 23, 472-9	36
177	Carbon nanotubes L'hitosan nanobiocomposite for immunosensor. <i>Thin Solid Films</i> , 2010 , 519, 1160-116 6 .2	36
176	Application of polyaniline as enzyme based biosensor. <i>Current Applied Physics</i> , 2005 , 5, 174-177 2.6	36
175	Application of poly(aniline) as a glucose biosensor. <i>Sensors and Actuators B: Chemical</i> , 1994 , 21, 165-169 8.5	36
174	Multiwalled carbon nanotube modified microfluidic-based biosensor chip for nucleic acid detection. Sensors and Actuators B: Chemical, 2018, 266, 329-336	34
173	Zirconia grafted carbon nanotubes based biosensor for M. Tuberculosis detection. <i>Applied Physics Letters</i> , 2011 , 99, 143702	34
172	A self assembled monolayer based microfluidic sensor for urea detection. <i>Nanoscale</i> , 2011 , 3, 2971-7	34
171	Low density lipoprotein detection based on antibody immobilized self-assembled monolayer: investigations of kinetic and thermodynamic properties. <i>Journal of Physical Chemistry B</i> , 2009 , 113, 1440 3-41	2 34
170	A novel urea biosensor based on zirconia. <i>Thin Solid Films</i> , 2010 , 519, 1187-1191 2.2	34
169	Immobilization of glucose oxidase onto Langmuir B lodgett films of poly-3-hexylthiophene. <i>Current Applied Physics</i> , 2003 , 3, 275-279	34
168	Protein-conjugated quantum dots interface: binding kinetics and label-free lipid detection. Analytical Chemistry, 2014 , 86, 1710-8	33
167	Self-assembled monolayer based impedimetric platform for food borne mycotoxin detection. Nanoscale, 2010 , 2, 2811-7	33
166	Dielectric relaxation in thin conducting polyaniline films. <i>Polymer</i> , 1998 , 39, 3399-3404 3.9	33
165	Nucleic acid immobilized polypyrrolepolyvinylsulphonate film for Mycobacterium tuberculosis detection. <i>Electrochemistry Communications</i> , 2008 , 10, 821-826	33
164	Thermal analysis of chemically synthesized polyemeraldine base. <i>Journal of Applied Polymer Science</i> , 2000 , 75, 149-155	33
163	A chitosan modified nickel oxide platform for biosensing applications. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 6698-6708	32
162	Biocompatible nanostructured magnesium oxide-chitosan platform for genosensing application. Biosensors and Bioelectronics, 2013 , 45, 181-8	32

161	Phase control of nanostructured iron oxide for application to biosensor. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 464-474	7.3	31
160	Bismuth oxide nanorods based immunosensor for mycotoxin detection. <i>Materials Science and Engineering C</i> , 2017 , 70, 564-571	8.3	31
159	Fumed silica nanoparticlesEhitosan nanobiocomposite for ochratoxin-A detection. <i>Electrochemistry Communications</i> , 2009 , 11, 1919-1923	5.1	31
158	Electrophoretically deposited nano-structured polyaniline film for glucose sensing. <i>Thin Solid Films</i> , 2010 , 519, 1145-1150	2.2	31
157	Performance of electrochromic cells of polyaniline in polymeric electrolytes. <i>Journal of Materials Science Letters</i> , 1994 , 13, 1490-1493		31
156	PEDOT:PSS/PVA-Nanofibers-Decorated Conducting Paper for Cancer Diagnostics. <i>Advanced Materials Technologies</i> , 2016 , 1, 1600056	6.8	31
155	Electrochemical piezoelectric reusable immunosensor for aflatoxin B1 detection. <i>Biochemical Engineering Journal</i> , 2015 , 103, 103-113	4.2	30
154	Microstructured cystine dendrites-based impedimetric sensor for nucleic acid detection. <i>Biomacromolecules</i> , 2011 , 12, 2925-32	6.9	30
153	Polyaniline-cerium oxide nanocomposite for hydrogen peroxide sensor. <i>Journal of Nanoscience and Nanotechnology</i> , 2009 , 9, 4679-85	1.3	30
152	Functionalized Gold Nanoparticles ©ctadecylamine Hybrid Langmuir-Blodgett Film for Enzyme Sensor. <i>Electroanalysis</i> , 2009 , 21, 1587-1596	3	30
151	Electrochemical genosensor based on modified octadecanethiol self-assembled monolayer for Escherichia coli detection. <i>Sensors and Actuators B: Chemical</i> , 2011 , 151, 333-340	8.5	30
150	Zinc oxide-potassium ferricyanide composite thin film matrix for biosensing applications. <i>Analytica Chimica Acta</i> , 2009 , 653, 212-6	6.6	29
149	A biocompatible serine functionalized nanostructured zirconia based biosensing platform for non-invasive oral cancer detection. <i>RSC Advances</i> , 2016 , 6, 77037-77046	3.7	29
148	A surface functionalized nanoporous titania integrated microfluidic biochip. <i>Nanoscale</i> , 2014 , 6, 13958-	6 9 .7	28
147	Quantum dots self assembly based interface for blood cancer detection. <i>Langmuir</i> , 2013 , 29, 8753-62	4	28
146	Immobilization of glucose oxidase onto electrochemically prepared poly(aniline-co-fluoroaniline) films. <i>Journal of Applied Polymer Science</i> , 2004 , 91, 3999-4006	2.9	28
145	Biocompatible self-assembled monolayer platform based on (3-glycidoxypropyl)trimethoxysilane for total cholesterol estimation. <i>Analytical Methods</i> , 2011 , 3, 2237	3.2	27
144	Immobilization and Characterization of Lactate Dehydrogenase on TEOS Derived Sol-Gel Films. Journal of Sol-Gel Science and Technology, 1997 , 10, 309-316	2.3	27

(2010-2016)

143	Quantum dot monolayer for surface plasmon resonance signal enhancement and DNA hybridization detection. <i>Biosensors and Bioelectronics</i> , 2016 , 80, 477-482	11.8	26
142	Polypyrrole/multiwalled carbon nanotubes-based biosensor for cholesterol estimation. <i>Polymers for Advanced Technologies</i> , 2012 , 23, 1084-1091	3.2	26
141	Hybrid cross-linked polyaniline-WO3 nanocomposite thin film for NO(x) gas sensing. <i>Journal of Nanoscience and Nanotechnology</i> , 2009 , 9, 1792-6	1.3	26
140	Dithiobissuccinimidyl propionate self assembled monolayer based cholesterol biosensor. <i>Analyst, The</i> , 2007 , 132, 1005-9	5	26
139	Nanomaterials based biosensors for cancer biomarker detection. <i>Journal of Physics: Conference Series</i> , 2016 , 704, 012011	0.3	26
138	Protein functionalized nanostructured zirconia based electrochemical immunosensor for cardiac troponin I detection. <i>Journal of Materials Research</i> , 2017 , 32, 2966-2972	2.5	25
137	Biofunctionalized graphene oxide wrapped carbon nanotubes enabled microfluidic immunochip for bacterial cells detection. <i>Sensors and Actuators B: Chemical</i> , 2018 , 255, 2495-2503	8.5	25
136	Sol-gel-derived titanium oxide-cerium oxide biocompatible nanocomposite film for urea sensor. Journal of Materials Research, 2009 , 24, 1667-1673	2.5	24
135	Enhanced loading of glucose oxidase on polyaniline films based on anion exchange. <i>Journal of Applied Polymer Science</i> , 1998 , 70, 1447-1453	2.9	24
134	Electrochemical characterization of self-assembled monolayers (SAMs) of thiophenol and aminothiophenols on polycrystalline Au: Effects of potential cycling and mixed SAM formation. <i>Journal of Electroanalytical Chemistry</i> , 2008 , 619-620, 87-97	4.1	24
133	A hollow-nanosphere-based microfluidic biosensor for biomonitoring of cardiac troponin I. <i>Journal of Materials Chemistry B</i> , 2019 , 7, 3826-3839	7.3	23
132	Reduced graphene oxidelitania based platform for label-free biosensor. RSC Advances, 2014, 4, 60386-0	59 3/ 96	23
131	Langmuir-Blodgett film based on MEH-PPV for cholesterol biosensor. <i>Analytica Chimica Acta</i> , 2009 , 634, 243-9	6.6	23
130	Interfacial polarization in semiconducting polypyrrole thin films. <i>Journal of Physics Condensed Matter</i> , 1992 , 4, 5747-5756	1.8	23
129	Dual-modality microfluidic biosensor based on nanoengineered mesoporous graphene hydrogels. <i>Lab on A Chip</i> , 2020 , 20, 760-777	7.2	23
128	Protein functionalised self assembled monolayer based biosensor for colon cancer detection. <i>Talanta</i> , 2019 , 201, 465-473	6.2	22
127	Facile synthesis of 2-dimensional transparent graphene flakes for nucleic acid detection. <i>Sensors and Actuators B: Chemical</i> , 2015 , 210, 281-289	8.5	22
126	DNA biosensor for detection of Neisseria gonorrhoeae causing sexually transmitted disease. <i>Journal of Biotechnology</i> , 2010 , 150, 357-65	3.7	22

125	Application of conducting poly(aniline-co-pyrrole) film to cholesterol biosensor. <i>Journal of Applied Polymer Science</i> , 2007 , 105, 3211-3219	2.9	22
124	Quantum dot-based microfluidic biosensor for cancer detection. <i>Applied Physics Letters</i> , 2015 , 106, 19	379.34	21
123	Graphene oxidelhetal nanocomposites for cancer biomarker detection. RSC Advances, 2017, 7, 35982-	35 99 1	21
122	Polyaniline-carboxymethyl cellulose nanocomposite for cholesterol detection. <i>Journal of Nanoscience and Nanotechnology</i> , 2010 , 10, 6479-88	1.3	21
121	Peptide Nucleic Acid Immobilized Biocompatible Silane Nanocomposite Platform for Mycobacterium tuberculosis Detection. <i>Electroanalysis</i> , 2010 , 22, 2672-2682	3	21
120	Photocarrier mobility in processable polyaniline. <i>Journal of Applied Physics</i> , 1993 , 74, 2109-2111	2.5	21
119	Electrochemical copolymerization and doping of phenylene oxidepyrrole: A new conducting polymer. <i>Journal of Polymer Science, Polymer Letters Edition</i> , 1985 , 23, 57-61		21
118	Recent Advances of Conducting Polymers and Their Composites for Electrochemical Biosensing Applications. <i>Journal of Functional Biomaterials</i> , 2020 , 11,	4.8	21
117	Electrochemical genosensor based on carboxylated graphene for detection of water-borne pathogen. <i>Sensors and Actuators B: Chemical</i> , 2018 , 275, 312-321	8.5	20
116	Cationic poly(lactic-co-glycolic acid) iron oxide microspheres for nucleic acid detection. <i>Nanoscale</i> , 2013 , 5, 3800-7	7.7	20
115	Biofunctionalized nanostructured tungsten trioxide based sensor for cardiac biomarker detection. <i>Materials Letters</i> , 2017 , 186, 202-205	3.3	20
114	Biosensor for total cholesterol estimation using N-(2-aminoethyl)-3-aminopropyltrimethoxysilane self-assembled monolayer. <i>Analytical and Bioanalytical Chemistry</i> , 2007 , 389, 2235-42	4.4	20
113	Mesoporous silica particle embedded functional graphene oxide as an efficient platform for urea biosensing. <i>Analytical Methods</i> , 2014 , 6, 6711-6720	3.2	19
112	Mediator-free biosensor using chitosan capped CdS quantum dots for detection of total cholesterol. <i>RSC Advances</i> , 2015 , 5, 45928-45934	3.7	19
111	Preparation and characterization of bio-functionalized iron oxide nanoparticles for biomedical application. <i>Thin Solid Films</i> , 2010 , 519, 1219-1223	2.2	19
110	Muon studies of conducting polymers. <i>Synthetic Metals</i> , 1993 , 55, 677-684	3.6	19
109	Gold nanomaterials for optical biosensing and bioimaging. <i>Nanoscale Advances</i> , 2021 , 3, 2679-2698	5.1	19
108	Highly sensitive biofunctionalized nickel oxide nanowires for nanobiosensing applications. <i>RSC Advances</i> , 2013 , 3, 16060	3.7	18

(2010-2013)

107	Magnesium oxide grafted carbon nanotubes based impedimetric genosensor for biomedical application. <i>Biosensors and Bioelectronics</i> , 2013 , 50, 406-13	11.8	18	
106	Polythiophene gold nanoparticles composite film for application to glucose sensor. <i>Journal of Applied Polymer Science</i> , 2008 , 110, 988-994	2.9	18	
105	Conducting polymer based biomolecular electronic devices 2003 , 61, 331-343		18	
104	Influence of pH on the electroactivity of polycarbazole. <i>Materials Science and Engineering C</i> , 1995 , 3, 21	5&38	18	
103	Polyaniline modified flexible conducting paper for cancer detection. <i>Applied Physics Letters</i> , 2016 , 108, 203702	3.4	18	
102	Controlled deposition of functionalized silica coated zinc oxide nano-assemblies at the air/water interface for blood cancer detection. <i>Analytica Chimica Acta</i> , 2016 , 937, 29-38	6.6	17	
101	Production and Optimization of Physicochemical Parameters of Cellulase Using Untreated Orange Waste by Newly Isolated Emericella variecolor NS3. <i>Applied Biochemistry and Biotechnology</i> , 2017 , 183, 601-612	3.2	17	
100	Mediator free cholesterol biosensor based on self-assembled monolayer platform. <i>Analyst, The</i> , 2012 , 137, 747-53	5	17	
99	Sol-Gel Derived Nanostructured Metal Oxide Platform for Bacterial Detection. <i>Electroanalysis</i> , 2011 , 23, 2699-2708	3	17	
98	Preparation and characterization of an enzyme electrode based on cholesterol esterase and cholesterol oxidase immobilized onto conducting polypyrrole films. <i>Journal of Applied Polymer Science</i> , 2004 , 91, 3769-3773	2.9	17	
97	Characterization of DNA immobilized on electrochemically prepared conducting polypyrrole-polyvinyl sulfonate films. <i>Applied Biochemistry and Biotechnology</i> , 2001 , 96, 303-9	3.2	17	
96	Recent advances in 3D printing technologies for wearable (bio)sensors. <i>Additive Manufacturing</i> , 2021 , 46, 102088	6.1	17	
95	Exploring Providencia rettgeri for application to eco-friendly paper based microbial fuel cell. <i>Biosensors and Bioelectronics</i> , 2020 , 165, 112323	11.8	16	
94	In-situ electrosynthesized nanostructured Mn3O4-polyaniline nanofibers- biointerface for endocrine disrupting chemical detection. <i>Sensors and Actuators B: Chemical</i> , 2016 , 236, 781-793	8.5	16	
93	Enhancing performance of uricase using multiwalled carbon nanotube doped polyaniline. <i>Applied Biochemistry and Biotechnology</i> , 2014 , 174, 1174-87	3.2	16	
92	Chitosan-modified carbon nanotubes-based platform for low-density lipoprotein detection. <i>Applied Biochemistry and Biotechnology</i> , 2014 , 174, 926-35	3.2	16	
91	Horse radish peroxidase immobilized polyaniline for hydrogen peroxide sensor. <i>Polymers for Advanced Technologies</i> , 2011 , 22, 903-908	3.2	16	
90	Fabrication of Neisseria gonorrhoeae biosensor based on chitosanMWCNT platform. <i>Thin Solid Films</i> , 2010 , 519, 1135-1140	2.2	16	

89	Emerging Trends in Microfluidics Based Devices. <i>Biotechnology Journal</i> , 2020 , 15, e1900279	5.6	15
88	A biofunctionalized quantum dot-nickel oxide nanorod based smart platform for lipid detection. Journal of Materials Chemistry B, 2016 , 4, 2706-2714	7.3	15
87	Biofunctionalized Nanostructured Yttria Modified Non-Invasive Impedometric Biosensor for Efficient Detection of Oral Cancer. <i>Nanomaterials</i> , 2019 , 9,	5.4	15
86	Poly (pyrrole-co-N-methyl pyrrole) for application to cholesterol sensor. <i>Journal of Materials Science</i> , 2009 , 44, 954-961	4.3	15
85	Nanostructured conducting polymer based reagentless capacitive immunosensor. <i>Biomedical Microdevices</i> , 2010 , 12, 63-70	3.7	15
84	Biosensor based on Langmuir-Blodgett films of poly(3-hexyl thiophene) for detection of galactose in human blood. <i>Biotechnology Letters</i> , 2004 , 26, 645-7	3	15
83	Synthesis and characterization of fluoro-substituted polyaniline. <i>Applied Biochemistry and Biotechnology</i> , 2001 , 96, 155-65	3.2	15
82	Novel electrochromism phenomenon observed in polyaniline films. <i>Synthetic Metals</i> , 1995 , 75, 119-122	3.6	15
81	A Label-Free Photoluminescence Genosensor Using Nanostructured Magnesium Oxide for Cholera Detection. <i>Scientific Reports</i> , 2015 , 5, 17384	4.9	14
80	Electrical properties of metal/Langmuir-Blodgett (polymeraldine base) layer/metal devices. <i>Journal of Applied Polymer Science</i> , 1997 , 63, 141-145	2.9	14
79	Application of polyaniline/sol-gel derived tetraethylorthosilicate films to an amperometric lactate biosensor. <i>Analytical Sciences</i> , 2003 , 19, 1477-80	1.7	14
78	Dielectric spectroscopic studies on polypyrrole glucose oxidase films. <i>Journal of Applied Polymer Science</i> , 1996 , 60, 2309-2316	2.9	14
77	Ion exchanged polypyrrole-based glucose biosensor: Enhanced loading and response. <i>Electroanalysis</i> , 1995 , 7, 579-582	3	14
76	Point-of-Care PCR Assays for COVID-19 Detection. <i>Biosensors</i> , 2021 , 11,	5.9	14
75	Antibody conjugated metal nanoparticle decorated graphene sheets for a mycotoxin sensor. <i>RSC Advances</i> , 2016 , 6, 56518-56526	3.7	13
74	Nanostructured platform for the detection of Neisseria gonorrhoeae using electrochemical impedance spectroscopy and differential pulse voltammetry. <i>Mikrochimica Acta</i> , 2012 , 177, 201-210	5.8	13
73	Nanomaterial-Modified Conducting Paper: Fabrication, Properties, and Emerging Biomedical Applications. <i>Global Challenges</i> , 2019 , 3, 1900041	4.3	12
72	Quantum dots based platform for application to fish freshness biosensor. <i>Sensors and Actuators B: Chemical</i> , 2013 , 177, 627-633	8.5	12

(2013-2009)

71	Surface plasmon resonance-based DNA biosensor for arsenic trioxide detection. <i>International Journal of Environmental Analytical Chemistry</i> , 2009 , 89, 49-57	1.8	12
70	Nucleic acid sensor for insecticide detection. <i>Journal of Molecular Recognition</i> , 2008 , 21, 217-23	2.6	12
69	Self-assembled monolayer for low density lipoprotein detection. <i>Journal of Molecular Recognition</i> , 2008 , 21, 419-24	2.6	12
68	Time-of-Flight Photocarrier Mobility in Langmuir-Blodgett Films of Regioregular Poly(3-hexylthiophene). <i>Japanese Journal of Applied Physics</i> , 1999 , 38, 6768-6771	1.4	12
67	Conducting paper based sensor for cancer biomarker detection. <i>Journal of Physics: Conference Series</i> , 2016 , 704, 012010	0.3	12
66	Multi-organ on a chip for personalized precision medicine. MRS Communications, 2018, 8, 652-667	2.7	11
65	Excellent storage stability and sensitive detection of neurotoxin quinolinic acid. <i>Biosensors and Bioelectronics</i> , 2017 , 90, 224-229	11.8	11
64	Nanostructured nickel oxide film for application to fish freshness biosensor. <i>Applied Physics Letters</i> , 2012 , 101, 023703	3.4	11
63	Electrophoretically fabricated core-shell CNT-DNA biowires for biosensing. <i>Journal of Materials Chemistry</i> , 2012 , 22, 2727-2732		11
62	Electrochemical Urea Biosensor Based on Sol-gel Derived Nanostructured Cerium Oxide. <i>Journal of Physics: Conference Series</i> , 2012 , 358, 012006	0.3	11
61	Opportunities in nano-structured metal oxides based biosensors. <i>Journal of Physics: Conference Series</i> , 2012 , 358, 012007	0.3	11
60	Polycarbazole-film-coated electrodes as electrochromic devices. <i>Advanced Materials for Optics and Electronics</i> , 1996 , 6, 399-402		11
59	Immobilization of glucose oxidase in electrochemically prepared polypyrrole films. <i>Journal of Materials Science Letters</i> , 1996 , 15, 124-128		11
58	Electroactivity and proton doping of polycarbazole. <i>Journal of Materials Science Letters</i> , 1995 , 14, 401-40	04	11
57	Ultrasensitive biosensing platform based on yttria doped zirconia-reduced graphene oxide nanocomposite for detection of salivary oral cancer biomarker. <i>Bioelectrochemistry</i> , 2021 , 140, 107799	5.6	11
56	Optical and electro-catalytic studies of nanostructured thulium oxide for vitamin C detection. <i>Journal of Alloys and Compounds</i> , 2013 , 578, 405-412	5.7	10
55	Polyaniline-based biosensors. <i>Nanobiosensors in Disease Diagnosis</i> , 2015 , 25		10
54	Nanostructured magnesium oxide biosensing platform for cholera detection. <i>Applied Physics Letters</i> , 2013 , 102, 144106	3.4	10

53	Electrophoretically deposited polyaniline nanotubes based film for cholesterol detection. <i>Electrophoresis</i> , 2010 , 31, 3754-62	3.6	10
52	Preparation and characterization of Langmuir-Blodgett films of polyemeraldine base. <i>Polymer</i> , 1996 , 37, 4809-4813	3.9	10
51	Electrochromic response of thin polypyrrole film in semi-solid electrolyte. <i>Journal of Materials Science Letters</i> , 1996 , 15, 997		10
50	Optical and electrical characteristics of electrodeposited polypyrrole films. <i>Journal of Applied Polymer Science</i> , 1993 , 50, 411-417	2.9	10
49	Bioinspired synthesis of iron-based nanomaterials for application in biofuels production: A new in-sight. <i>Renewable and Sustainable Energy Reviews</i> , 2021 , 147, 111206	16.2	10
48	Functionalized Carbon Nanomaterials for Biosensors 2018 , 75-103		9
47	Biosensors For Food Toxin Detection: Carbon Nanotubes And Graphene. <i>Materials Research Society Symposia Proceedings</i> , 2015 , 1725, 24		9
46	Coupling electrochemical response of a DNA biosensor with PCR for Neisseria gonorrhoeae detection. <i>Diagnostic Microbiology and Infectious Disease</i> , 2014 , 78, 16-23	2.9	9
45	Self-assembled monolayer based electrochemical nucleic acid sensor for Vibrio cholerated etection. Journal of Physics: Conference Series, 2012, 358, 012009	0.3	9
44	Low density lipoprotein sensor based on surface plasmon resonance. <i>Thin Solid Films</i> , 2009 , 518, 719-72	? 3.2	9
43	Langmuir B lodgett films of polyaniline for low density lipoprotein detection. <i>Thin Solid Films</i> , 2010 , 519, 1110-1114	2.2	9
42	Electrical properties of metal/Langmuir-Blodgett layer/semiconductive devices. <i>Journal of Applied Polymer Science</i> , 1996 , 60, 407-411	2.9	9
41	Sol © el Derived Nanostructured Tin Oxide Film for Glucose Sensor. <i>Sensor Letters</i> , 2009 , 7, 64-71	0.9	9
40	Nanoengineered Conductive Polyaniline Enabled Sensor for Sensitive Humidity Detection. <i>IEEE Sensors Journal</i> , 2020 , 20, 12574-12581	4	8
39	Simulation of Electrochemical Process for Glucose Oxidase Immobilized Conducting Polymer Electrodes. <i>Analytical Letters</i> , 1996 , 29, 1477-1484	2.2	8
38	AC conductivity of polyemeraldine base. <i>Journal of Physics Condensed Matter</i> , 1994 , 6, 8913-8922	1.8	8
37	Current progress in organicIhorganic hetero-nano-interfaces based electrochemical biosensors for healthcare monitoring. <i>Coordination Chemistry Reviews</i> , 2022 , 452, 214282	23.2	8
36	An emerging nanostructured molybdenum trioxide-based biocompatible sensor platform for breast cancer biomarker detection. <i>MRS Communications</i> , 2018 , 8, 668-679	2.7	8

(2022-2014)

Thiol modified chitosan self-assembled monolayer platform for nucleic acid biosensor. <i>Applied Biochemistry and Biotechnology</i> , 2014 , 174, 1201-13	3.2	7	
Aptamer based electrochemical sensor for detection of human lung adenocarcinoma A549 cells. Journal of Physics: Conference Series, 2012, 358, 012001	0.3	7	
Electrochemical studies of cystine modified self-assembled monolayer for Escherichia coli detection. <i>Thin Solid Films</i> , 2010 , 519, 1178-1183	2.2	7	
Chapter 3 Electrochemical biosensors. <i>Advances in Biosensors</i> , 2003 , 63-100		7	
Solgel derived cerium-oxidelilicon-oxide nanocomposite for cypermethrin detection. <i>Thin Solid Films</i> , 2010 , 519, 1122-1127	2.2	6	
Characterization of DNA immobilized on electrochemically prepared conducting polypyrrole-polyvinyl sulfonate films. <i>Applied Biochemistry and Biotechnology</i> , 2001 , 96, 313-320	3.2	6	
Defects in conducting polymers. Bulletin of Materials Science, 1988, 10, 85-96	1.7	6	
Is the glass transition in some super-cooled polyphenyls preceded by molecular cluster formation?. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1985 , 108, 153-156	2.3	5	
PLD grown ZnO K 3[Fe(CN)6] composite thin film for biosensing application. <i>Thin Solid Films</i> , 2010 , 519, 1184-1186	2.2	4	
Electrochemical Techniques in Biosensors 2008,		4	
Biofunctionalized nanodot zirconia-based efficient biosensing platform for noninvasive oral cancer detection. <i>MRS Communications</i> , 2020 , 10, 652-659	2.7	4	
Sol G el Derived Nanostructured Zirconia Platform for Vitamin C Detection. <i>Journal of the Electrochemical Society</i> , 2013 , 160, H93-H97	3.9	3	
An experimental set-up for the study of electromechanical properties of conducting polymer films. <i>Current Applied Physics</i> , 2003 , 3, 317-320	2.6	3	
Covalent immobilization of urease on polypyrrole microspheres for application as a urea biosensor. <i>E-Polymers</i> , 2002 , 2,	2.7	3	
Immobilization of lactate dehydrogenase on tetraethylorthosilicate-derived sol-gel films for			
application to lactate biosensor. <i>Applied Biochemistry and Biotechnology</i> , 2001 , 96, 293-301	3.2	3	
	3.2	2	
application to lactate biosensor. <i>Applied Biochemistry and Biotechnology</i> , 2001 , 96, 293-301	3.2		
	Aptamer based electrochemical sensor for detection of human lung adenocarcinoma A549 cells. Journal of Physics: Conference Series, 2012, 358, 012001 Electrochemical studies of cystine modified self-assembled monolayer for Escherichia coli detection. Thin Solid Films, 2010, 519, 1178-1183 Chapter 3 Electrochemical biosensors. Advances in Biosensors, 2003, 63-100 Soligel derived cerium-oxideBilicon-oxide nanocomposite for cypermethrin detection. Thin Solid Films, 2010, 519, 1122-1127 Characterization of DNA immobilized on electrochemically prepared conducting polypyrrole-polyvinyl sulfonate films. Applied Biochemistry and Biotechnology, 2001, 96, 313-320 Defects in conducting polymers. Bulletin of Materials Science, 1988, 10, 85-96 Is the glass transition in some super-cooled polyphenyls preceded by molecular cluster formation? Physics Letters, Section A: General, Atomic and Solid State Physics, 1985, 108, 153-156 PLD grown Znoß3[Fe(CN)6] composite thin film for biosensing application. Thin Solid Films, 2010, 519, 1184-1186 Electrochemical Techniques in Biosensors 2008, Biofunctionalized nanodot zirconia-based efficient biosensing platform for noninvasive oral cancer detection. MRS Communications, 2020, 10, 652-659 Soligel Derived Nanostructured Zirconia Platform for Vitamin C Detection. Journal of the Electrochemical Society, 2013, 160, H93-H97 An experimental set-up for the study of electromechanical properties of conducting polymer films. Current Applied Physics, 2003, 3, 317-320 Covalent immobilization of urease on polypyrrole microspheres for application as a urea biosensor.	Aptamer based electrochemical sensor for detection of human lung adenocarcinoma A549 cells. Journal of Physics: Conference Series, 2012, 358, 012001 Electrochemical studies of cystine modified self-assembled monolayer for Escherichia coli detection. Thin Solid Films, 2010, 519, 1178-1183 Chapter 3 Electrochemical biosensors. Advances in Biosensors, 2003, 63-100 Soligel derived cerium-oxideBilicon-oxide nanocomposite for cypermethrin detection. Thin Solid Films, 2010, 519, 1122-1127 Characterization of DNA immobilized on electrochemically prepared conducting polypyrrole-polyvinyl sulfonate films. Applied Biochemistry and Biotechnology, 2001, 96, 313-320 Defects in conducting polymers. Bulletin of Materials Science, 1988, 10, 85-96 1.7 Is the glass transition in some super-cooled polyphenyls preceded by molecular cluster formation?. Physics Letters, Section A: General, Atomic and Solid State Physics, 1985, 108, 153-156 PLD grown ZnOR3[Fe(CN)6] composite thin film for biosensing application. Thin Solid Films, 2010, 519, 1184-1186 Electrochemical Techniques in Biosensors 2008, Biofunctionalized nanodot zirconia-based efficient biosensing platform for noninvasive oral cancer detection. MRS Communications, 2020, 10, 652-659 Soligel Derived Nanostructured Zirconia Platform for Vitamin C Detection. Journal of the Electrochemical Society, 2013, 160, H93-H97 An experimental set-up for the study of electromechanical properties of conducting polymer films. Current Applied Physics, 2003, 3, 317-320 Covalent immobilization of urease on polypyrrole microspheres for application as a urea biosensor.	Aptamer based electrochemical sensor for detection of human lung adenocarcinoma A549 cells. Journal of Physics: Conference Series, 2012, 358, 012001 Electrochemical studies of cystine modified self-assembled monolayer for Escherichia coli detection. Thin Solid Films, 2010, 519, 1178-1183 Chapter 3 Electrochemical biosensors. Advances in Biosensors, 2003, 63-100 7 Soligel derived cerium-oxideBilitcon-oxide nanocomposite for cypermethrin detection. Thin Solid Films, 2010, 519, 1122-1127 Characterization of DNA immobilized on electrochemically prepared conducting polypyrrole-polyvinyl sulfonate films. Applied Biochemistry and Biotechnology, 2001, 96, 313-320 Defects in conducting polymers. Bulletin of Materials Science, 1988, 10, 85-96 Is the glass transition in some super-cooled polyphenyls preceded by molecular cluster formation?. Physics Letters, Section A: General, Atomic and Solid State Physics, 1985, 108, 153-156 PLD grown ZnOR3[Fe(CN)6] composite thin film for biosensing application. Thin Solid Films, 2010, 519, 1184-1186 Electrochemical Techniques in Biosensors 2008, 4 Biofunctionalized nanodot zirconia-based efficient biosensing platform for noninvasive oral cancer detection. MRS Communications, 2020, 10, 652-659 Soligel Derived Nanostructured Zirconia Platform for Vitamin C Detection. Journal of the Electrochemical Society, 2013, 160, H93-H97 An experimental set-up for the study of electromechanical properties of conducting polymer films. Covalent immobilization of urease on polypyrrole microspheres for application as a urea biosensor.

17	TCAD Analysis and Simulation of Double Metal Negative Capacitance FET (DM NCFET) 2021,		2
16	Impedance spectroscopic study of biofilm formation on pencil lead graphite anode in microbial fuel cell. <i>Journal of the Taiwan Institute of Chemical Engineers</i> , 2021 , 128, 114-114	5.3	2
15	Emerging DNA-based multifunctional nano-biomaterials towards electrochemical sensing applications. <i>Nanoscale</i> , 2021 , 13, 10305-10319	7.7	2
14	Bioconjugated Nanostructured Metals and Metal Oxides for Biosensors 2018 , 105-125		1
13	Biopolymeric Nanostructures: Biosensors and Bioimaging 2018 , 127-144		1
12	Fabrication of nanocrystalline CdS electrode via chemical bath deposition technique for application to cholesterol sensor. <i>Journal of Physics: Conference Series</i> , 2012 , 358, 012008	0.3	1
11	A Chemosensor Based on Gold Nanoparticles and Dithiothreitol (DTT) for Acrylamide Electroanalysis. <i>Nanomaterials</i> , 2021 , 11,	5.4	1
10	Chapter 4 Diagnostics applications of enzyme-doped sol-gel derived glasses. <i>Advances in Biosensors</i> , 2003 , 101-130		1
9	Characteristics of aqueous polycarbazole batteries 1999 , 74, 145		1
8	A Numerical Study of Analog Parameter of Negative Capacitance Field Effect Transistor with Spacer 2021 ,		1
7	Detection of biomolecules in dielectric modulated double metal below ferroelectric layer FET with improved sensitivity. <i>Journal of Materials Science: Materials in Electronics</i> ,1	2.1	О
6	Preface. Applied Biochemistry and Biotechnology, 2014 , 174, 867-8	3.2	
5	P4-S1.02 Coupling of electrochemical detection with PCR amplification for sensitive detection of Neisseria gonorrhoeae. <i>Sexually Transmitted Infections</i> , 2011 , 87, A307-A307	2.8	
4	Immobilization of glucose oxidase onto electrochemically prepared poly(aniline-co-fluoroaniline) films. <i>Journal of Applied Polymer Science</i> , 2004 , 92, 1374-1374	2.9	
3	Metal/Semiconducting Polyaniline Heterojunctions 1991, 401-405		
2	Nanostructured Materials for DNA Biochip 2018 , 221-262		
1	Nanobioelectrochemistry: Fundamentals and biosensor applications. <i>Frontiers of Nanoscience</i> , 2021 , 87-128	0.7	