
Henning Buddenbaum

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2852990/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Permafrost soil complexity evaluated by laboratory imaging Vis â€ NIR spectroscopy. European Journal of Soil Science, 2021, 72, 114-119.	3.9	5
2	Modelling of the adsorption of urea herbicides by tropical soils with an Adaptiveâ€Neuralâ€based Fuzzy Inference System. Journal of Chemometrics, 2021, 35, e3335.	1.3	3
3	Quantitative mapping and spectroscopic characterization of particulate organic matter fractions in soil profiles with imaging VisNIR spectroscopy. Scientific Reports, 2021, 11, 16725.	3.3	7
4	Long-term effects of water stress on hyperspectral remote sensing indicators in young radiata pine. Forest Ecology and Management, 2021, 502, 119707.	3.2	11
5	Using hyperspectral plant traits linked to photosynthetic efficiency to assess N and P partition. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 169, 406-420.	11.1	19
6	Monitoring biochemical limitations to photosynthesis in N and P-limited radiata pine using plant functional traits quantified from hyperspectral imagery. Remote Sensing of Environment, 2020, 248, 112003.	11.0	16
7	Stress Detection in New Zealand Kauri Canopies with WorldView-2 Satellite and LiDAR Data. Remote Sensing, 2020, 12, 1906.	4.0	7
8	Monitoring of Canopy Stress Symptoms in New Zealand Kauri Trees Analysed with AISA Hyperspectral Data. Remote Sensing, 2020, 12, 926.	4.0	11
9	Hyperspectral VNIR-spectroscopy and imagery as a tool for monitoring herbicide damage in wilding conifers. Biological Invasions, 2019, 21, 3395-3413.	2.4	8
10	Variability and Uncertainty Challenges in Scaling Imaging Spectroscopy Retrievals and Validations from Leaves Up to Vegetation Canopies. Surveys in Geophysics, 2019, 40, 631-656.	4.6	35
11	Preprocessing Ground-Based Visible/Near Infrared Imaging Spectroscopy Data Affected by Smile Effects. Sensors, 2019, 19, 1543.	3.8	10
12	Imaging Spectroscopy of Forest Ecosystems: Perspectives for the Use of Space-borne Hyperspectral Earth Observation Systems. Surveys in Geophysics, 2019, 40, 553-588.	4.6	38
13	An Empirical Assessment of Angular Dependency for RedEdge-M in Sloped Terrain Viticulture. Remote Sensing, 2019, 11, 2561.	4.0	5
14	Using Landsat and Sentinel-2 Data for the Generation of Continuously Updated Forest Type Information Layers in a Cross-Border Region. Remote Sensing, 2019, 11, 2337.	4.0	11
15	Detection of New Zealand Kauri Trees with AISA Aerial Hyperspectral Data for Use in Multispectral Monitoring. Remote Sensing, 2019, 11, 2865.	4.0	4
16	Inverting Procosine-D For Very High Spatial and Temporal Resolution Retrieval of Foliar Biochemistry. , 2018, , .		0
17	Application of Photon Recollision Probability Theory for Compatibility Check Between Foliage Clumping and Leaf Area Index Products Obtained from Earth Observation Data. , 2018, , .		0
18	Data synergy between leaf area index and clumping index Earth Observation products using photon recollision probability theory. Remote Sensing of Environment, 2018, 215, 1-6.	11.0	9

Henning Buddenbaum

#	Article	IF	CITATIONS
19	Combining canopy height and tree species map information for large-scale timber volume estimations under strong heterogeneity of auxiliary data and variable sample plot sizes. European Journal of Forest Research, 2018, 137, 489-505.	2.5	11
20	Microscale soil structures foster organic matter stabilization in permafrost soils. Geoderma, 2017, 293, 44-53.	5.1	54
21	Visualising mineralogical heterogeneities and texture in a mudstone concretion using hyperspectral imaging. Zeitschrift Der Deutschen Gesellschaft Fur Geowissenschaften, 2017, 168, 403-414.	0.4	2
22	Estimating the soil clay content and organic matter by means of different calibration methods of vis-NIR diffuse reflectance spectroscopy. Soil and Tillage Research, 2016, 155, 510-522.	5.6	204
23	Measuring Stress Reactions of Beech Seedlings with PRI, Fluorescence, Temperatures and Emissivity from VNIR and Thermal Field Imaging Spectroscopy. European Journal of Remote Sensing, 2015, 48, 263-282.	3.5	16
24	VNIR/SWIR Laboratory Imaging Spectroscopy for Wall-to-Wall Mapping of Elemental Concentrations in Soil Cores. Photogrammetrie, Fernerkundung, Geoinformation, 2015, 2015, 423-435.	1.2	10
25	PROSPECT Inversions of Leaf Laboratory Imaging Spectroscopy – a Comparison of Spectral Range and Inversion Technique Influences. Photogrammetrie, Fernerkundung, Geoinformation, 2015, 2015, 231-240.	1.2	36
26	Assessing the Suitability of Future Multi- and Hyperspectral Satellite Systems for Mapping the Spatial Distribution of Norway Spruce Timber Volume. Remote Sensing, 2015, 7, 12009-12040.	4.0	15
27	Satellite-Based Derivation of High-Resolution Forest Information Layers for Operational Forest Management. Forests, 2015, 6, 1982-2013.	2.1	32
28	The EnMAP Spaceborne Imaging Spectroscopy Mission for Earth Observation. Remote Sensing, 2015, 7, 8830-8857.	4.0	529
29	Digital Mapping of Soil Properties Using Multivariate Statistical Analysis and ASTER Data in an Arid Region. Remote Sensing, 2015, 7, 1181-1205.	4.0	63
30	The Potential of EnMAP and Sentinel-2 Data for Detecting Drought Stress Phenomena in Deciduous Forest Communities. Remote Sensing, 2015, 7, 14227-14258.	4.0	55
31	Estimation of soil salinity using three quantitative methods based on visible and near-infrared reflectance spectroscopy:Âa case study from Egypt. Arabian Journal of Geosciences, 2015, 8, 5127-5140.	1.3	59
32	Using VNIR and SWIR field imaging spectroscopy for drought stress monitoring of beech seedlings. International Journal of Remote Sensing, 2015, 36, 4590-4605.	2.9	23
33	Fine spatial resolution mapping of soil organic matter quality in a Histosol profile. European Journal of Soil Science, 2014, 65, 827-839.	3.9	36
34	Comparison of Feature Reduction Algorithms for Classifying Tree Species With Hyperspectral Data on Three Central European Test Sites. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7, 2547-2561.	4.9	140
35	Modeling and Mapping of Soil Salinity with Reflectance Spectroscopy and Landsat Data Using Two Quantitative Methods (PLSR and MARS). Remote Sensing, 2014, 6, 10813-10834.	4.0	121
36	The use of imaging and non-imaging Spectroscopy for the determination of stress phenomena of beech trees. Photogrammetrie, Fernerkundung, Geoinformation, 2014, 2014, 17-26.	1.2	1

#	Article	IF	CITATIONS
37	Abbildende und nichtabbildende Gelädespektrometrie zur Untersuchung von Stressphäomenen an Buchenpflanzen The use of imaging and non-imaging Spectroscopy for the determination of stress phenomena of beech trees. Photogrammetrie, Fernerkundung, Geoinformation, 2014, 2014, 17-26.	1.2	2
38	Laboratory imaging spectroscopy of a stagnic Luvisol profile — High resolution soil characterisation, classification and mapping of elemental concentrations. Geoderma, 2013, 195-196, 122-132.	5.1	66
39	Fusion of full-waveform lidar and imaging spectroscopy remote sensing data for the characterization of forest stands. International Journal of Remote Sensing, 2013, 34, 4511-4524.	2.9	39
40	An efficient approach to standardizing the processing of hemispherical images for the estimation of forest structural attributes. Agricultural and Forest Meteorology, 2012, 160, 1-13.	4.8	47
41	The Effects of Spectral Pretreatments on Chemometric Analyses of Soil Profiles Using Laboratory Imaging Spectroscopy. Applied and Environmental Soil Science, 2012, 2012, 1-12.	1.7	69
42	Field Imaging Spectroscopy of Beech Seedlings under Dryness Stress. Remote Sensing, 2012, 4, 3721-3740.	4.0	19
43	A review of the combination of spectral and geometric modelling for the application in forest remote sensing. Photogrammetrie, Fernerkundung, Geoinformation, 2010, 2010, 253-265.	1.2	3
44	Retrieval of chlorophyll and nitrogen in Norway spruce (Picea abies L. Karst.) using imaging spectroscopy. International Journal of Applied Earth Observation and Geoinformation, 2010, 12, 17-26.	2.8	119
45	Classification of coniferous tree species and age classes using hyperspectral data and geostatistical methods. International Journal of Remote Sensing, 2005, 26, 5453-5465.	2.9	150
46	Short communication: Laboratory imaging spectroscopy of soil profiles. Journal of Spectral Imaging, 0, , .	0.0	12
47	A BiomeBGC-based Evaluation of Dryness Stress of Central European Forests. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XL-7/W3, 345-351.	0.2	3