
Steve Vucic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2852940/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Amyotrophic lateral sclerosis. Lancet, The, 2011, 377, 942-955.	13.7	2,182
2	Clinical course, therapeutic responses and outcomes in relapsing MOG antibody-associated demyelination. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 127-137.	1.9	422
3	Cortical hyperexcitability may precede the onset of familial amyotrophic lateral sclerosis. Brain, 2008, 131, 1540-1550.	7.6	391
4	Novel threshold tracking techniques suggest that cortical hyperexcitability is an early feature of motor neuron disease. Brain, 2006, 129, 2436-2446.	7.6	284
5	Radiological differentiation of optic neuritis with myelin oligodendrocyte glycoprotein antibodies, aquaporin-4 antibodies, and multiple sclerosis. Multiple Sclerosis Journal, 2016, 22, 470-482.	3.0	284
6	Defining secondary progressive multiple sclerosis. Brain, 2016, 139, 2395-2405.	7.6	281
7	Guillain-Barré syndrome: An update. Journal of Clinical Neuroscience, 2009, 16, 733-741.	1.5	224
8	Transcranial magnetic stimulation and amyotrophic lateral sclerosis: pathophysiological insights. Journal of Neurology, Neurosurgery and Psychiatry, 2013, 84, 1161-1170.	1.9	213
9	Advances in treating amyotrophic lateral sclerosis: insights from pathophysiological studies. Trends in Neurosciences, 2014, 37, 433-442.	8.6	186
10	Axonal excitability properties in amyotrophic lateral sclerosis. Clinical Neurophysiology, 2006, 117, 1458-1466.	1.5	177
11	TDP-43 proteinopathies: a new wave of neurodegenerative diseases. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 86-95.	1.9	174
12	Pathophysiological and diagnostic implications of cortical dysfunction in ALS. Nature Reviews Neurology, 2016, 12, 651-661.	10.1	165
13	Sensitivity and specificity of threshold tracking transcranial magnetic stimulation for diagnosis of amyotrophic lateral sclerosis: a prospective study. Lancet Neurology, The, 2015, 14, 478-484.	10.2	164
14	Assessment of cortical excitability using threshold tracking techniques. Muscle and Nerve, 2006, 33, 477-486.	2.2	162
15	Emerging therapies and challenges in spinal muscular atrophy. Annals of Neurology, 2017, 81, 355-368.	5.3	157
16	Improving clinical trial outcomes in amyotrophic lateral sclerosis. Nature Reviews Neurology, 2021, 17, 104-118.	10.1	152
17	Cortical hyperexcitability precedes lower motor neuron dysfunction in ALS. Clinical Neurophysiology, 2015, 126, 803-809.	1.5	140
18	Treatment effectiveness of alemtuzumab compared with natalizumab, fingolimod, and interferon beta in relapsing-remitting multiple sclerosis: a cohort study. Lancet Neurology, The, 2017, 16, 271-281.	10.2	134

#	Article	IF	CITATIONS
19	Quantifying disease progression in amyotrophic lateral sclerosis. Annals of Neurology, 2014, 76, 643-657.	5.3	133
20	Riluzole exerts central and peripheral modulating effects in amyotrophic lateral sclerosis. Brain, 2013, 136, 1361-1370.	7.6	123
21	Rate of disease progression: a prognostic biomarker in ALS. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 628-632.	1.9	123
22	Cortical excitability distinguishes ALS from mimic disorders. Clinical Neurophysiology, 2011, 122, 1860-1866.	1.5	122
23	Association of Regulatory T-Cell Expansion With Progression of Amyotrophic Lateral Sclerosis. JAMA Neurology, 2018, 75, 681.	9.0	120
24	Incidence and prevalence of NMOSD in Australia and New Zealand. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 632-638.	1.9	108
25	Pathophysiology of Neurodegeneration in Familial Amyotrophic Lateral Sclerosis. Current Molecular Medicine, 2009, 9, 255-272.	1.3	101
26	Abnormalities in cortical and peripheral excitability in flail arm variant amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2007, 78, 849-852.	1.9	97
27	Fatigue in multiple sclerosis: Mechanisms and management. Clinical Neurophysiology, 2010, 121, 809-817.	1.5	97
28	Split-hand index for the diagnosis of amyotrophic lateral sclerosis. Clinical Neurophysiology, 2013, 124, 410-416.	1.5	97
29	Towards personalized therapy for multiple sclerosis: prediction of individual treatment response. Brain, 2017, 140, 2426-2443.	7.6	94
30	Differentiating lower motor neuron syndromes. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 474-483.	1.9	93
31	Transcranial Magnetic Stimulation for the Assessment of Neurodegenerative Disease. Neurotherapeutics, 2017, 14, 91-106.	4.4	89
32	Upregulation of persistent sodium conductances in familial ALS. Journal of Neurology, Neurosurgery and Psychiatry, 2010, 81, 222-227.	1.9	86
33	Pathophysiology and Diagnosis of ALS: Insights from Advances in Neurophysiological Techniques. International Journal of Molecular Sciences, 2019, 20, 2818.	4.1	84
34	Facial onset sensory and motor neuronopathy (FOSMN syndrome): a novel syndrome in neurology. Brain, 2006, 129, 3384-3390.	7.6	81
35	Effect of Ezogabine on Cortical and Spinal Motor Neuron Excitability in Amyotrophic Lateral Sclerosis. JAMA Neurology, 2021, 78, 186.	9.0	79
36	Motor cortical function determines prognosis in sporadic ALS. Neurology, 2016, 87, 513-520.	1.1	76

#	Article	IF	CITATIONS
37	Cortical Dysfunction Underlies the Development of the Split-Hand in Amyotrophic Lateral Sclerosis. PLoS ONE, 2014, 9, e87124.	2.5	75
38	Utility of magnetic resonance imaging in diagnosing ulnarneuropathy at the elbow. Clinical Neurophysiology, 2006, 117, 590-595.	1.5	74
39	Cortical excitability testing distinguishes Kennedy's disease from amyotrophic lateral sclerosis. Clinical Neurophysiology, 2008, 119, 1088-1096.	1.5	74
40	Physiological changes in neurodegeneration — mechanistic insights and clinical utility. Nature Reviews Neurology, 2018, 14, 259-271.	10.1	72
41	Defining the mechanisms that underlie cortical hyperexcitability in amyotrophic lateral sclerosis. Experimental Neurology, 2009, 220, 177-182.	4.1	71
42	Characterization of the human myelin oligodendrocyte glycoprotein antibody response in demyelination. Acta Neuropathologica Communications, 2019, 7, 145.	5.2	71
43	Comparison of fingolimod, dimethyl fumarate and teriflunomide for multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 458-468.	1.9	71
44	The effects of alterations in conditioning stimulus intensity on short interval intracortical inhibition. Brain Research, 2009, 1273, 39-47.	2.2	67
45	Imbalance of cortical facilitatory and inhibitory circuits underlies hyperexcitability in ALS. Neurology, 2018, 91, e1669-e1676.	1.1	67
46	Guillain-Barre syndrome in Asia. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, 907-913.	1.9	63
47	Higher latitude is significantly associated with an earlier age of disease onset in multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 1343-1349.	1.9	63
48	Safety and tolerability of Triumeq in amyotrophic lateral sclerosis: the Lighthouse trial. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2019, 20, 595-604.	1.7	63
49	Measurement of axonal excitability: Consensus guidelines. Clinical Neurophysiology, 2020, 131, 308-323.	1.5	63
50	Amyotrophic lateral sclerosis and motor neuron syndromes in Asia. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 821-830.	1.9	61
51	Cortical hyperexcitability and disease spread in amyotrophic lateral sclerosis. European Journal of Neurology, 2017, 24, 816-824.	3.3	57
52	Cortical dysfunction underlies disability in multiple sclerosis. Multiple Sclerosis Journal, 2012, 18, 425-432.	3.0	56
53	Fatigue and activity dependent changes in axonal excitability in amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2007, 78, 1202-1208.	1.9	54
54	Risk of secondary progressive multiple sclerosis: A longitudinal study. Multiple Sclerosis Journal, 2020, 26, 79-90.	3.0	52

#	Article	IF	CITATIONS
55	Utility of threshold tracking transcranial magnetic stimulation in ALS. Clinical Neurophysiology Practice, 2018, 3, 164-172.	1.4	51
56	Neurophysiological biomarkers in amyotrophic lateral sclerosis. Current Opinion in Neurology, 2018, 31, 640-647.	3.6	51
57	The autoimmune disease-associated transcription factors EOMES and TBX21 are dysregulated in multiple sclerosis and define a molecular subtype of disease. Clinical Immunology, 2014, 151, 16-24.	3.2	49
58	FOSMN syndrome. Neurology, 2012, 79, 73-79.	1.1	47
59	Diagnostic criteria in amyotrophic lateral sclerosis. Neurology, 2016, 87, 684-690.	1.1	46
60	Utility of somatosensory evoked potentials in chronic acquired demyelinating neuropathy. Muscle and Nerve, 2008, 38, 1447-1454.	2.2	45
61	ALS pathophysiology: Insights from the split-hand phenomenon. Clinical Neurophysiology, 2014, 125, 186-193.	1.5	44
62	Autoantibody responses to nodal and paranodal antigens in chronic inflammatory neuropathies. Journal of Neuroimmunology, 2017, 309, 41-46.	2.3	44
63	Axonal Excitability in Amyotrophic Lateral Sclerosis. Neurotherapeutics, 2017, 14, 78-90.	4.4	43
64	Progressive axonal dysfunction and clinical impairment in amyotrophic lateral sclerosis. Clinical Neurophysiology, 2012, 123, 2460-2467.	1.5	42
65	Quantitative ultrasound of denervated hand muscles. Muscle and Nerve, 2015, 52, 221-230.	2.2	42
66	A Phase 2, Double-Blind, Randomized, Dose-Ranging Trial Of <i>Reldesemtiv</i> In Patients With ALS. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2021, 22, 287-299.	1.7	42
67	ALS is a multistep process in South Korean, Japanese, and Australian patients. Neurology, 2020, 94, e1657-e1663.	1.1	39
68	Neurofascinâ€155 IGG4 Neuropathy: Pathophysiological Insights, Spectrum of Clinical Severity and Response To treatment. Muscle and Nerve, 2018, 57, 848-851.	2.2	37
69	CMT with pyramidal features. Neurology, 2003, 60, 696-699.	1.1	36
70	Axonal Ion Channel Dysfunction in <i>C9orf72</i> Familial Amyotrophic Lateral Sclerosis. JAMA Neurology, 2015, 72, 49.	9.0	35
71	Incidence of pregnancy and disease-modifying therapy exposure trends in women with multiple sclerosis: A contemporary cohort study. Multiple Sclerosis and Related Disorders, 2019, 28, 235-243.	2.0	35
72	Utility of transcranial magnetic stimulation in delineating amyotrophic lateral sclerosis pathophysiology. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2013, 116, 561-575.	1.8	34

#	Article	IF	CITATIONS
73	Study protocol of RESCUE-ALS: A Phase 2, randomised, double-blind, placebo-controlled study in early symptomatic amyotrophic lateral sclerosis patients to assess bioenergetic catalysis with CNM-Au8 as a mechanism to slow disease progression. BMJ Open, 2021, 11, e041479.	1.9	33
74	Potential structural and functional biomarkers of upper motor neuron dysfunction in ALS. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2016, 17, 85-92.	1.7	32
75	Health, wellbeing and lived experiences of adults with SMA: a scoping systematic review. Orphanet Journal of Rare Diseases, 2020, 15, 70.	2.7	32
76	Cortical excitability in hereditary motor neuronopathy with pyramidal signs: comparison with ALS. Journal of Neurology, Neurosurgery and Psychiatry, 2010, 81, 97-100.	1.9	31
77	The autoimmune risk gene ZMIZ1 is a vitamin D responsive marker of a molecular phenotype of multiple sclerosis. Journal of Autoimmunity, 2017, 78, 57-69.	6.5	31
78	Safety of plasmapheresis in the treatment of neurological disease. Australian and New Zealand Journal of Medicine, 1998, 28, 301-305.	0.5	30
79	Dissecting the Mechanisms Underlying Short-Interval Intracortical Inhibition Using Exercise. Cerebral Cortex, 2011, 21, 1639-1644.	2.9	30
80	Contribution of different relapse phenotypes to disability in multiple sclerosis. Multiple Sclerosis Journal, 2017, 23, 266-276.	3.0	30
81	Long-term effects of intravenous immunoglobulin in CIDP. Clinical Neurophysiology, 2007, 118, 1980-1984.	1.5	29
82	Corticomotoneuronal function and hyperexcitability in acquired neuromyotonia. Brain, 2010, 133, 2727-2733.	7.6	29
83	Clinical and therapeutic predictors of disease outcomes in AQP4-IgG+ neuromyelitis optica spectrum disorder. Multiple Sclerosis and Related Disorders, 2020, 38, 101868.	2.0	29
84	Motor neurone disease: progress and challenges. Medical Journal of Australia, 2017, 206, 357-362.	1.7	28
85	Pathophysiologic insights into motor axonal function in Kennedy disease. Neurology, 2007, 69, 1828-1835.	1.1	27
86	Relapse Patterns in NMOSD: Evidence for Earlier Occurrence of Optic Neuritis and Possible Seasonal Variation. Frontiers in Neurology, 2020, 11, 537.	2.4	27
87	Inhibition of HERV-K (HML-2) in amyotrophic lateral sclerosis patients on antiretroviral therapy. Journal of the Neurological Sciences, 2021, 423, 117358.	0.6	27
88	Apraxia and Motor Dysfunction in Corticobasal Syndrome. PLoS ONE, 2014, 9, e92944.	2.5	26
89	Segmental motoneuronal dysfunction is a feature of amyotrophic lateral sclerosis. Clinical Neurophysiology, 2015, 126, 828-836.	1.5	26
90	Multifocal motor neuropathy with conduction block: Distribution of demyelination and axonal degeneration. Clinical Neurophysiology, 2007, 118, 124-130.	1.5	25

#	Article	IF	CITATIONS
91	Flecainide in Amyotrophic Lateral Sclerosis as a Neuroprotective Strategy (FANS): A Randomized Placebo-Controlled Trial. EBioMedicine, 2015, 2, 1916-1922.	6.1	25
92	Motor unit remodelling in multifocal motor neuropathy: The importance of axonal loss. Clinical Neurophysiology, 2017, 128, 2022-2028.	1.5	25
93	Split-hand and split-limb phenomena in amyotrophic lateral sclerosis: pathophysiology, electrophysiology and clinical manifestations. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 1126-1130.	1.9	25
94	Cortical hyperexcitability: Diagnostic and pathogenic biomarker of ALS. Neuroscience Letters, 2021, 759, 136039.	2.1	24
95	Maladaptation of cortical circuits underlies fatigue and weakness in ALS. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2011, 12, 414-420.	2.1	23
96	Cortical contributions to the flail leg syndrome: Pathophysiological insights. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2016, 17, 389-396.	1.7	23
97	Peripheral nerve diffusion tensor imaging as a measure of disease progression in ALS. Journal of Neurology, 2017, 264, 882-890.	3.6	23
98	Physiological processes influencing motor-evoked potential duration with voluntary contraction. Journal of Neurophysiology, 2017, 117, 1156-1162.	1.8	23
99	Brain functional connectome abnormalities in amyotrophic lateral sclerosis are associated with disability and cortical hyperexcitability. European Journal of Neurology, 2017, 24, 1507-1517.	3.3	23
100	<i>In vivo</i> evidence for reduced ion channel expression in motor axons of patients with amyotrophic lateral sclerosis. Journal of Physiology, 2018, 596, 5379-5396.	2.9	23
101	Functional Biomarkers for Amyotrophic Lateral Sclerosis. Frontiers in Neurology, 2018, 9, 1141.	2.4	23
102	Phase 2 randomized placebo controlled double blind study to assess the efficacy and safety of tecfidera in patients with amyotrophic lateral sclerosis (TEALS Study). Medicine (United States), 2020, 99, e18904.	1.0	23
103	Real-world effectiveness of cladribine for Australian patients with multiple sclerosis: An MSBase registry substudy. Multiple Sclerosis Journal, 2021, 27, 465-474.	3.0	23
104	Motor cortical dysfunction develops in spinocerebellar ataxia type 3. Clinical Neurophysiology, 2016, 127, 3418-3424.	1.5	22
105	The low EOMES/TBX21 molecular phenotype in multiple sclerosis reflects CD56+ cell dysregulation and is affected by immunomodulatory therapies. Clinical Immunology, 2016, 163, 96-107.	3.2	22
106	Pathophysiology of motor dysfunction in a childhood motor neuron disease caused by mutations in the riboflavin transporter. Clinical Neurophysiology, 2016, 127, 911-918.	1.5	22
107	Lymphocyte count in peripheral blood is not associated with the level of clinical response to treatment with fingolimod. Multiple Sclerosis and Related Disorders, 2018, 19, 105-108.	2.0	22
108	Amyotrophic lateral sclerosis as a multi-step process: an Australia population study. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2019, 20, 532-537.	1.7	22

#	Article	IF	CITATIONS
109	Risk of early relapse following the switch from injectables to oral agents for multiple sclerosis. European Journal of Neurology, 2016, 23, 729-736.	3.3	21
110	Corticomotoneuronal function in asymptomatic SOD-1 mutation carriers. Clinical Neurophysiology, 2010, 121, 1781-1785.	1.5	20
111	Fasciculation intensity and disease progression in amyotrophic lateral sclerosis. Clinical Neurophysiology, 2018, 129, 2149-2154.	1.5	20
112	Regional motor cortex dysfunction in amyotrophic lateral sclerosis. Annals of Clinical and Translational Neurology, 2019, 6, 1373-1382.	3.7	19
113	Conduction block in immuneâ€mediated neuropathy: paranodopathy versus axonopathy. European Journal of Neurology, 2019, 26, 1121-1129.	3.3	19
114	Motor neuron disease: current management and future prospects. Internal Medicine Journal, 2015, 45, 1005-1013.	0.8	18
115	Safety and efficacy of dimethyl fumarate in ALS: randomised controlled study. Annals of Clinical and Translational Neurology, 2021, 8, 1991-1999.	3.7	18
116	Miller Fisher Syndrome Associated With Immunotherapy for Metastatic Melanoma. Neurohospitalist, The, 2018, 8, 191-193.	0.8	17
117	Amyotrophic lateral sclerosis diagnostic index. Neurology, 2019, 92, e536-e547.	1.1	17
118	The clinical profile of NMOSD in Australia and New Zealand. Journal of Neurology, 2020, 267, 1431-1443.	3.6	17
119	Dysphagia in Multiple Sclerosis: Evaluation and Validation of the DYMUS Questionnaire. Dysphagia, 2018, 33, 273-281.	1.8	16
120	Gold Coast diagnostic criteria: Implications for <scp>ALS</scp> diagnosis and clinical trial enrollment. Muscle and Nerve, 2021, 64, 532-537.	2.2	16
121	Anti-MAG neuropathy: Role of IgM antibodies, the paranodal junction and juxtaparanodal potassium channels. Clinical Neurophysiology, 2018, 129, 2162-2169.	1.5	15
122	Facial onset sensory motor neuronopathy (FOSMN) syndrome: an unusual amyotrophic lateral sclerosis phenotype?. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, 951-951.	1.9	14
123	Dissociation of Structural and Functional Integrities of the Motor System in Amyotrophic Lateral		

#	Article	IF	CITATIONS
127	Pathophysiological associations of transcallosal dysfunction in ALS. European Journal of Neurology, 2021, 28, 1172-1180.	3.3	12
128	Motor cortical excitability predicts cognitive phenotypes in amyotrophic lateral sclerosis. Scientific Reports, 2021, 11, 2172.	3.3	12
129	Association of Cortical Hyperexcitability and Cognitive Impairment in Patients With Amyotrophic Lateral Sclerosis. Neurology, 2021, 96, e2090-e2097.	1.1	12
130	Association of Latitude and Exposure to Ultraviolet B Radiation With Severity of Multiple Sclerosis. Neurology, 2022, 98, .	1.1	12
131	Interneuronal networks mediate cortical inhibition and facilitation. Clinical Neurophysiology, 2020, 131, 1000-1010.	1.5	11
132	Disability outcomes of early cerebellar and brainstem symptoms in multiple sclerosis. Multiple Sclerosis Journal, 2021, 27, 755-766.	3.0	11
133	Polyglucosan body disease myopathy: An unusual presentation. Muscle and Nerve, 2007, 35, 536-539.	2.2	10
134	Data characterizing the ZMIZ1 molecular phenotype of multiple sclerosis. Data in Brief, 2017, 11, 364-370.	1.0	10
135	Laterality of motor cortical function measured by transcranial magnetic stimulation threshold tracking. Muscle and Nerve, 2017, 55, 424-427.	2.2	10
136	Split elbow sign: more evidence for the importance of cortical dysfunction in ALS. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 729-729.	1.9	10
137	Motor cortical function and the precision grip. Physiological Reports, 2014, 2, e12120.	1.7	9
138	Cortical function and corticomotoneuronal adaptation in monomelic amyotrophy. Clinical Neurophysiology, 2017, 128, 1488-1495.	1.5	9
139	Hyperpolarization-activated cyclic-nucleotide-gated channels potentially modulate axonal excitability at different thresholds. Journal of Neurophysiology, 2017, 118, 3044-3050.	1.8	9
140	Blunted sweating does not alter the rise in core temperature in people with multiple sclerosis exercising in the heat. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, 320, R258-R267.	1.8	9
141	Biomarkers and Future Targets for Development in Amyotrophic Lateral Sclerosis. Current Medicinal Chemistry, 2014, 21, 3535-3550.	2.4	9
142	Hypermetabolism appears to be an adverse prognostic biomarker in amyotrophic lateral sclerosis: a potential for therapeutic intervention?. European Journal of Neurology, 2018, 25, 1-2.	3.3	8
143	Silent lesions on MRI imaging – Shifting goal posts for treatment decisions in multiple sclerosis. Multiple Sclerosis Journal, 2018, 24, 1569-1577.	3.0	8
144	Inherited Neuropathies. Seminars in Neurology, 2019, 39, 620-639.	1.4	8

#	Article	IF	CITATIONS
145	AANEM – IFCN glossary of terms in neuromuscular electrodiagnostic medicine and ultrasound. Clinical Neurophysiology, 2020, 131, 1662-1663.	1.5	8
146	The effectiveness of natalizumab vs fingolimod–A comparison of international registry studies. Multiple Sclerosis and Related Disorders, 2021, 53, 103012.	2.0	8
147	Natalizumab Versus Fingolimod in Patients with Relapsing-Remitting Multiple Sclerosis: A Subgroup Analysis From Three International Cohorts. CNS Drugs, 2021, 35, 1217-1232.	5.9	8
148	MRI Patterns Distinguish AQP4 Antibody Positive Neuromyelitis Optica Spectrum Disorder From Multiple Sclerosis. Frontiers in Neurology, 2021, 12, 722237.	2.4	8
149	Utility of Dissociated Intrinsic Hand Muscle Atrophy in the Diagnosis of Amyotrophic Lateral Sclerosis. Journal of Visualized Experiments, 2014, , .	0.3	7
150	Prediction of on-treatment disability worsening in RRMS with the MAGNIMS score. Multiple Sclerosis Journal, 2021, 27, 695-705.	3.0	7
151	Review Article "Spotlight on Ultrasonography in the Diagnosis of Peripheral Nerve Disease: The Evidence to Dateâ€: International Journal of General Medicine, 2021, Volume 14, 4579-4604.	1.8	7
152	Split-hand index: A diagnostic and prognostic marker in amyotrophic lateral sclerosis across varying regions of onset. Clinical Neurophysiology, 2021, 132, 2130-2135.	1.5	7
153	Normal axonal ion channel function in large peripheral nerve fibers following chronic ciguatera sensitization. Muscle and Nerve, 2008, 37, 403-405.	2.2	6
154	Clarifying variability of corticomotoneuronal function in kennedy disease. Muscle and Nerve, 2011, 44, 197-201.	2.2	6
155	Posturography as a biomarker of intravenous immunoglobulin efficacy in chronic inflammatory demyelinating polyradiculoneuropathy. Muscle and Nerve, 2022, 65, 43-50.	2.2	6
156	Long read sequencing overcomes challenges in the diagnosis of <scp><i>SORD</i></scp> neuropathy. Journal of the Peripheral Nervous System, 2022, 27, 120-126.	3.1	6
157	Multiple sclerosis in Latin America: A different disease course severity? A collaborative study from the MSBase Registry. Multiple Sclerosis Journal - Experimental, Translational and Clinical, 2015, 1, 205521731560019.	1.0	5
158	Nerve ultrasound in detecting spinal nerve pathology in GBS: A novel diagnostic approach?. Clinical Neurophysiology, 2015, 126, 649-650.	1.5	5
159	Lateâ€onset distal myopathy of the upper limbs due to P.Ile151Val mutation in the valosinâ€containing protein. Muscle and Nerve, 2016, 54, 165-166.	2.2	5
160	Efficacy and safety of teriflunomide in Asian patients with relapsing forms of multiple sclerosis: A subgroup analysis of the phase 3 TOWER study. Journal of Clinical Neuroscience, 2019, 59, 229-231.	1.5	5
161	Prominent subcutaneous oedema as a masquerading symptom of an underlying inflammatory myopathy. Internal Medicine Journal, 2017, 47, 217-221.	0.8	4
162	Utility of Transcranial Magnetic Simulation in Studying Upper Motor Neuron Dysfunction in Amyotrophic Lateral Sclerosis. Brain Sciences, 2021, 11, 906.	2.3	4

#	Article	IF	CITATIONS
163	MiNDAUS partnership: a roadmap for the cure and management of motor Neurone disease. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2022, 23, 321-328.	1.7	4
164	The split-elbow index: A biomarker of the split elbow sign in ALS. Clinical Neurophysiology Practice, 2022, 7, 16-20.	1.4	4
165	Expression of CYP24A1 and other multiple sclerosis risk genes in peripheral blood indicates response to vitamin D in homeostatic and inflammatory conditions. Genes and Immunity, 2021, 22, 227-233.	4.1	3
166	The Upper Motor Neuron—Improved Knowledge from ALS and Related Clinical Disorders. Brain Sciences, 2021, 11, 958.	2.3	3
167	Measuring Tremor—A Comparison of Automated Video Analysis, Neurophysiology, and Clinical Rating. Movement Disorders, 2021, 36, 2962-2963.	3.9	3
168	Apparent anticipation in SOD1 familial amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2013, 14, 452-456.	1.7	2
169	Nerve ultrasound in diabetic polyneuropathy: The new frontier?. Clinical Neurophysiology, 2014, 125, 657.	1.5	2
170	Motor Unit Number Index (MUNIX): A novel biomarker for ALS?. Clinical Neurophysiology, 2016, 127, 1938-1939.	1.5	2
171	Nerve biopsy in acquired neuropathies. Journal of the Peripheral Nervous System, 2021, 26 Suppl 2, S21-S41.	3.1	2
172	Differences in nerve excitability properties across upper limb sensory and motor axons. Clinical Neurophysiology, 2022, 136, 138-149.	1.5	2
173	032â€Neurological sequelae of immune checkpoint inhibitors: a case series. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, A13.3-A14.	1.9	1
174	Is Motor Unit Number Index (MUNIX) an index of Compound Muscle Action Potential amplitude rather than motor unit number?. Clinical Neurophysiology, 2019, 130, 1686-1687.	1.5	1
175	A novel phenotype of hereditary spastic paraplegia type 7 associated with a compound heterozygous mutation in paraplegin. Muscle and Nerve, 2020, 62, E44-E45.	2.2	1
176	P300 jitter latency, brain-computer interface and amyotrophic lateral sclerosis. Clinical Neurophysiology, 2021, 132, 614-615.	1.5	1
177	008â€Disease reactivation after cessation of disease-modifying therapy in relapsing-remitting multiple sclerosis. , 2021, , .		1
178	"Taming the Beastâ€: Exploring the Lived Experience of Relapsing Remitting Multiple Sclerosis Using a Life History Approach. Research and Theory for Nursing Practice, 2019, 33, 229-245.	0.4	1
179	Confirmed disability progression as a marker of permanent disability in multiple sclerosis. European Journal of Neurology, 2022, , .	3.3	1
180	Article Commentary: Dysfunction of Corticomotoneurons in Guillain-BarrÎ-Syndrome (GBS)?. Clinical Medicine Case Reports, 2009, 2, CCRep.S3553.	0.1	0

#	Article	IF	CITATIONS
181	Response to Karam et al Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2012, 13, 159-160.	2.1	0
182	Isolated nerve plasmacytoma in a patient previously in systemic myeloma remission. Muscle and Nerve, 2017, 55, E27-E28.	2.2	0
183	timing of high-efficacy disease modifying therapies for relapsing-remitting multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, e1.11-e1.	1.9	0
184	Reply to: Comment on Y.D. Fragoso et al.: "Lymphocyte count in peripheral blood is not associated with the level of clinical response to treatment with fingolimod―[Mult. Scler. Relat. Disord. (2017)]. Multiple Sclerosis and Related Disorders, 2018, 22, 166.	2.0	0
185	Role Of spinal mechanisms in the pathophysiology of the split hand sign in amyotrophic lateral sclerosis. Muscle and Nerve, 2018, 58, 470-471.	2.2	0
186	Management of â€~surplus suffering' in relapsing remitting multiple sclerosis to improve patient quality of life. British Journal of Neuroscience Nursing, 2018, 14, 265-271.	0.2	0
187	004â€Mechanisms of nerve dysfunction in inflammatory neuropathies. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, A3.1-A3.	1.9	0
188	Motor neuron disease with malignancy: Clinical and pathophysiological insights. Clinical Neurophysiology, 2019, 130, 1557-1561.	1.5	0
189	Immune checkpoint inhibitors and neuropathy: A new dawn. Clinical Neurophysiology, 2019, 130, 1401-1402.	1.5	0
190	038â€Tremor: a clinical and neurophysiological study. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, A13.2-A13.	1.9	0
191	Neurotoxicity and ALS: Insights into Pathogenesis. , 2021, , 1-19.		0
192	Advances in the understanding of sensory neuronopathies. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 343-343.	1.9	0
193	073â€Headaches of raised intracranial pressure as a presenting feature of malignant infiltration in the cauda equina. , 2021, , .		0
194	036â€Nerve excitability and motor unit number estimation: early biomarkers of nerve involvement in hereditary amyloidosis (ATTRv). , 2021, , .		0
195	Dysfunction of Corticomotoneurons in Guillain-Barré Syndrome (GBS)?. Clinical Medicine Case Reports, 2009, 2, 59-61.	0.1	0