Gonzalo Prieto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2852864/publications.pdf

Version: 2024-02-01

159585 182427 5,799 47 30 51 citations h-index g-index papers 54 54 54 9381 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Direct Conversion of Syngas to Higher Alcohols via Tandem Integration of Fischer–Tropsch Synthesis and Reductive Hydroformylation. Angewandte Chemie, 2022, 134, .	2.0	5
2	Direct Conversion of Syngas to Higher Alcohols via Tandem Integration of Fischer–Tropsch Synthesis and Reductive Hydroformylation. Angewandte Chemie - International Edition, 2022, 61, .	13.8	14
3	Supported Fe _x Ni _y catalysts for the co-activation of CO ₂ and small alkanes. Faraday Discussions, 2021, 229, 208-231.	3.2	6
4	Synthetic ferripyrophyllite: preparation, characterization and catalytic application. Dalton Transactions, 2021, 50, 850-857.	3.3	3
5	CO ₂ Reduction over Mo ₂ C-Based Catalysts. ACS Catalysis, 2021, 11, 1624-1639.	11.2	34
6	Bottom-up assembly of bimetallic nanocluster catalysts from oxide-supported single-atom precursors. Journal of Materials Chemistry A, 2021, 9, 8401-8415.	10.3	8
7	Design of Cobalt Fischer–Tropsch Catalysts for the Combined Production of Liquid Fuels and Olefin Chemicals from Hydrogen-Rich Syngas. ACS Catalysis, 2021, 11, 4784-4798.	11.2	46
8	Unlocking mixed oxides with unprecedented stoichiometries from heterometallic metal-organic frameworks for the catalytic hydrogenation of CO2. Chem Catalysis, 2021, 1, 364-382.	6.1	18
9	Oneâ€Pot Cooperation of Singleâ€Atom Rh and Ru Solid Catalysts for a Selective Tandem Olefin Isomerizationâ€Hydrosilylation Process. Angewandte Chemie - International Edition, 2020, 59, 5806-5815.	13.8	76
10	Metal-Specific Reactivity in Single-Atom Catalysts: CO Oxidation on 4d and 5d Transition Metals Atomically Dispersed on MgO. Journal of the American Chemical Society, 2020, 142, 14890-14902.	13.7	75
11	Prospects of Heterogeneous Hydroformylation with Supported Single Atom Catalysts. Journal of the American Chemical Society, 2020, 142, 5087-5096.	13.7	98
12	Recycling of CO ₂ by Hydrogenation of Carbonate Derivatives to Methanol: Tuning Copper–Oxide Promotion Effects in Supported Catalysts. ChemSusChem, 2020, 13, 2043-2052.	6.8	10
13	Oneâ€Pot Cooperation of Singleâ€Atom Rh and Ru Solid Catalysts for a Selective Tandem Olefin Isomerizationâ€Hydrosilylation Process. Angewandte Chemie, 2020, 132, 5855-5864.	2.0	21
14	Hydrothermal Stability of High-Surface-Area α-Al ₂ 0 ₃ and Its Use as a Support for Hydrothermally Stable Fischer–Tropsch Synthesis Catalysts. Chemistry of Materials, 2020, 32, 4369-4374.	6.7	28
15	Surface Lewis Acidity of Periphery Oxide Species as a General Kinetic Descriptor for CO ₂ Hydrogenation to Methanol on Supported Copper Nanoparticles. ACS Catalysis, 2019, 9, 10409-10417.	11.2	40
16	2D Metal Organic Frameworkâ€Graphitic Carbon Nanocomposites as Precursors for Highâ€Performance O ₂ â€Evolution Electrocatalysts. Advanced Energy Materials, 2018, 8, 1802404.	19.5	43
17	Directional freeze-cast hybrid-backbone meso-macroporous bodies as micromonolith catalysts for gas-to-liquid processes. Journal of Materials Chemistry A, 2018, 6, 21978-21989.	10.3	12
18	Carbon Dioxide Hydrogenation into Higher Hydrocarbons and Oxygenates: Thermodynamic and Kinetic Bounds and Progress with Heterogeneous and Homogeneous Catalysis. ChemSusChem, 2017, 10, 1056-1070.	6.8	154

#	Article	IF	Citations
19	Intermediate Product Regulation in Tandem Solid Catalysts with Multimodal Porosity for High‥ield Synthetic Fuel Production. Angewandte Chemie, 2017, 129, 11638-11642.	2.0	10
20	Intermediate Product Regulation in Tandem Solid Catalysts with Multimodal Porosity for Highâ€Yield Synthetic Fuel Production. Angewandte Chemie - International Edition, 2017, 56, 11480-11484.	13.8	34
21	Hollow Nano- and Microstructures as Catalysts. Chemical Reviews, 2016, 116, 14056-14119.	47.7	634
22	Structure sensitivity of Cu and CuZn catalysts relevant to industrial methanol synthesis. Nature Communications, 2016, 7, 13057.	12.8	218
23	<i>In Situ</i> Hydrocracking of Fischer–Tropsch Hydrocarbons: CO-Prompted Diverging Reaction Pathways for Paraffin and î±-Olefin Primary Products. ACS Catalysis, 2016, 6, 4229-4238.	11.2	21
24	Small-Angle Scattering Analysis of Empty or Loaded Hierarchical Porous Materials. Journal of Physical Chemistry C, 2016, 120, 1488-1506.	3.1	19
25	Mesoscale Characterization of Nanoparticles Distribution Using Xâ€ray Scattering. Angewandte Chemie - International Edition, 2015, 54, 11804-11808.	13.8	22
26	Bridging the gap between insightful simplicity and successful complexity: From fundamental studies on model systems to technical catalysts. Journal of Catalysis, 2015, 328, 59-71.	6.2	17
27	The Yin and Yang in the Development of Catalytic Processes: Catalysis Research and Reaction Engineering. Angewandte Chemie - International Edition, 2015, 54, 3222-3239.	13.8	37
28	Cobalt-Catalyzed Fischer–Tropsch Synthesis: Chemical Nature of the Oxide Support as a Performance Descriptor. ACS Catalysis, 2015, 5, 3323-3335.	11.2	91
29	Metal–organic framework nanosheets in polymer composite materials for gas separation. Nature Materials, 2015, 14, 48-55.	27.5	1,780
30	Design and Synthesis of Copper–Cobalt Catalysts for the Selective Conversion of Synthesis Gas to Ethanol and Higher Alcohols. Angewandte Chemie - International Edition, 2014, 53, 6397-6401.	13.8	209
31	A Polyphenylene Support for Pd Catalysts with Exceptional Catalytic Activity. Angewandte Chemie - International Edition, 2014, 53, 8645-8648.	13.8	72
32	Quantitative Relationship between Support Porosity and the Stability of Pore-Confined Metal Nanoparticles Studied on CuZnO/SiO ₂ Methanol Synthesis Catalysts. ACS Nano, 2014, 8, 2522-2531.	14.6	71
33	Engineering and Sizing Nanoreactors To Confine Metal Complexes for Enhanced Catalytic Performance. ACS Catalysis, 2014, 4, 3791-3796.	11.2	17
34	Towards â€~greener' catalyst manufacture: Reduction of wastewater from the preparation of Cu/ZnO/Al2O3 methanol synthesis catalysts. Catalysis Today, 2013, 215, 142-151.	4.4	32
35	Towards stable catalysts by controlling collective properties of supported metal nanoparticles. Nature Materials, 2013, 12, 34-39.	27.5	606
36	The impact of pre-reduction thermal history on the metal surface topology and site-catalytic activity of Fischerâ€"Tropsch catalysts. Journal of Catalysis, 2013, 302, 37-48.	6.2	69

#	Article	IF	CITATIONS
37	Interplay between pore size and nanoparticle spatial distribution: Consequences for the stability of CuZn/SiO2 methanol synthesis catalysts. Journal of Catalysis, 2013, 303, 31-40.	6.2	56
38	Entrance Size Analysis of Silica Materials with Cagelike Pore Structure by Thermoporometry. Journal of Physical Chemistry C, 2012, 116, 23383-23393.	3.1	19
39	New insights into the role of the electronic properties of oxide promoters in Rh-catalyzed selective synthesis of oxygenates from synthesis gas. Journal of Catalysis, 2011, 280, 274-288.	6.2	64
40	Nanofibrous γ-Al2O3 as support for Co-based Fischer–Tropsch catalysts: Pondering the relevance of diffusional and dispersion effects on catalytic performance. Journal of Catalysis, 2009, 263, 292-305.	6.2	117
41	Cobalt particle size effects in Fischer–Tropsch synthesis: structural and in situ spectroscopic characterisation on reverse micelle-synthesised Co/ITQ-2 model catalysts. Journal of Catalysis, 2009, 266, 129-144.	6.2	342
42	The Application of Zeolites and Periodic Mesoporous Silicas in the Catalytic Conversion of Synthesis Gas. Topics in Catalysis, 2009, 52, 75-90.	2.8	69
43	Cobalt supported on morphologically tailored SBA-15 mesostructures: The impact of pore length on metal dispersion and catalytic activity in the Fischer–Tropsch synthesis. Applied Catalysis A: General, 2009, 367, 146-156.	4.3	134
44	The key role of support surface tuning during the preparation of catalysts from reverse micellar-synthesized metal nanoparticles. Catalysis Communications, 2007, 8, 1479-1486.	3.3	40
45	Breaking the dispersion-reducibility dependence in oxide-supported cobalt nanoparticles. Journal of Catalysis, 2007, 245, 470-476.	6.2	100
46	Influence of the preparative route on the properties of WOx–ZrO2 catalysts: A detailed structural, spectroscopic, and catalytic study. Journal of Catalysis, 2007, 248, 288-302.	6.2	100
47	Hydroconversion of n-hexadecane over Pt/WOx–ZrO2 catalysts prepared by a PVA-template coprecipitation route. Applied Catalysis A: General, 2006, 309, 224-236.	4.3	33