
Konstantin A Monogarov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2852517/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The power of model-fitting kinetic analysis applied to complex thermal decomposition of explosives: reconciling the kinetics of bicyclo-HMX thermolysis in solid state and solution. Journal of Thermal Analysis and Calorimetry, 2022, 147, 3195-3206.	2.0	16
2	Novel energetic oxadiazole assemblies. Mendeleev Communications, 2022, 32, 111-113.	0.6	12
3	Autocatalytic decomposition of energetic materials: interplay of theory and thermal analysis in the study of 5-amino-3,4-dinitropyrazole thermolysis. Physical Chemistry Chemical Physics, 2022, 24, 16325-16342.	1.3	11
4	Apparent autocatalysis due to liquefaction: thermal decomposition of ammonium 3,4,5-trinitropyrazolate. Physical Chemistry Chemical Physics, 2021, 23, 11797-11806.	1.3	10
5	Learning to fly: thermochemistry of energetic materials by modified thermogravimetric analysis and highly accurate quantum chemical calculations. Physical Chemistry Chemical Physics, 2021, 23, 15522-15542.	1.3	38
6	Design and Synthesis of Nitrogenâ€Rich Azoâ€Bridged Furoxanylazoles as Highâ€Performance Energetic Materials. Chemistry - A European Journal, 2021, 27, 14628-14637.	1.7	25
7	Sensitivity of energetic materials: Evidence of thermodynamic factor on a large array of CHNOFCl compounds. Chemical Engineering Journal, 2021, 421, 129804.	6.6	69
8	Two sides of thermal stability of energetic liquid: Vaporization and decomposition of 3-methylfuroxan. Journal of Molecular Liquids, 2021, 348, 118059.	2.3	6
9	Delving into Autocatalytic Liquid-State Thermal Decomposition of Novel Energetic 1,3,5-Triazines with Azido, Trinitroethyl, and Nitramino Groups. Journal of Physical Chemistry B, 2020, 124, 11197-11206.	1.2	5
10	Nitro-, Cyano-, and Methylfuroxans, and Their Bis-Derivatives: From Green Primary to Melt-Cast Explosives. Molecules, 2020, 25, 5836.	1.7	20
11	Synthesis of 4,4'-Bis[3-(Fluorodinitromethyl)-1H-1,2,4-triazol-5-Yl]azofurazan. Chemistry of Heterocyclic Compounds, 2020, 56, 619-622.	0.6	5
12	Pressure DSC for energetic materials. Part 2. Switching between evaporation and thermal decomposition of 3,5-dinitropyrazole. Thermochimica Acta, 2020, 690, 178697.	1.2	28
13	Energetic <i>N</i> -azidomethyl derivatives of polynitro hexaazaisowurtzitanes series: CL-20 analogues having the highest enthalpy. New Journal of Chemistry, 2020, 44, 8357-8365.	1.4	19
14	Supercritical Antisolvent Processing of Nitrocellulose: Downscaling to Nanosize, Reducing Friction Sensitivity and Introducing Burning Rate Catalyst. Nanomaterials, 2019, 9, 1386.	1.9	38
15	Progress in Additive Manufacturing of Energetic Materials: Creating the Reactive Microstructures with High Potential of Applications. Propellants, Explosives, Pyrotechnics, 2019, 44, 941-969.	1.0	77
16	First Synthesis of Aliphatic Nitroâ€ <i>NNO</i> â€azoxy Compounds. European Journal of Organic Chemistry, 2019, 2019, 91-94.	1.2	10
17	Exploring enhanced reactivity of nanosized titanium toward oxidation. Combustion and Flame, 2018, 191, 109-115.	2.8	14
18	Toward reliable characterization of energetic materials: interplay of theory and thermal analysis in the study of the thermal stability of tetranitroacetimidic acid (TNAA). Physical Chemistry Chemical Physics, 2018, 20, 29285-29298.	1.3	24

#	Article	IF	CITATIONS
19	Comparative Analysis of Boron Powders Obtained by Various Methods. I. Microstructure and Oxidation Parameters during Heating. Combustion, Explosion and Shock Waves, 2018, 54, 450-460.	0.3	24
20	Macro- vs Microcrystalline Wax: Interplay of Evaporation and Decomposition under Pressure Variation. Energy & amp; Fuels, 2017, 31, 8534-8539.	2.5	7
21	Study on thermal oxidation and combustion of aluminum ultrafine powder in high-energy material. MATEC Web of Conferences, 2017, 110, 01058.	0.1	Ο
22	Pursuing reliable thermal analysis techniques for energetic materials: decomposition kinetics and thermal stability of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate (TKX-50). Physical Chemistry Chemical Physics, 2017, 19, 436-449.	1.3	88
23	Uncontrolled re-entry of satellite parts after finishing their mission in LEO: Titanium alloy degradation by thermite reaction energy. Acta Astronautica, 2017, 135, 69-75.	1.7	13
24	Synergistic Effect of Ammonium Perchlorate on HMX: From Thermal Analysis to Combustion. Springer Aerospace Technology, 2017, , 365-381.	0.2	5
25	Laser ignition of high-energy materials containing AlB2and AlB12powders. MATEC Web of Conferences, 2017, 110, 01042.	0.1	2
26	5-Amino-3,4-dinitropyrazole as a Promising Energetic Material. Propellants, Explosives, Pyrotechnics, 2016, 41, 999-1005.	1.0	22
27	HP-DSC study of energetic materials. Part I. Overview of pressure influence on thermal behavior. Thermochimica Acta, 2016, 631, 1-7.	1.2	36
28	Nanometals. , 2016, , 47-63.		4
29	Catalysis of HMX Decomposition and Combustion. , 2016, , 193-230.		10
30	Novel Highly Energetic Pyrazoles: <i>N</i> â€Trinitromethylâ€Substituted Nitropyrazoles. Chemistry - an Asian Journal, 2015, 10, 1987-1996.	1.7	80
31	Novel highly energetic pyrazoles: N-fluorodinitromethyl and N-[(difluoroamino)dinitromethyl] derivatives. Mendeleev Communications, 2015, 25, 429-431.	0.6	55
32	Aluminum/HMX nanocomposites: Synthesis, microstructure, and combustion. Combustion, Explosion and Shock Waves, 2015, 51, 100-106.	0.3	25
33	Combustion and detonation of mechanoactivated aluminum–potassium perchlorate mixtures. Russian Journal of Physical Chemistry B, 2015, 9, 615-624.	0.2	4
34	On the mechanism of zirconium nitride formation by zirconium, zirconia and yttria burning in air. Journal of Solid State Chemistry, 2015, 230, 199-208.	1.4	6
35	CATALYTIC INFLUENCE OF NANOSIZED TITANIUM DIOXIDE ON THE THERMAL DECOMPOSITION AND COMBUSTION OF HMX. International Journal of Energetic Materials and Chemical Propulsion, 2014, 13, 211-228.	0.2	7
36	Comparative study of HMX and CL-20. Journal of Thermal Analysis and Calorimetry, 2011, 105, 529-534.	2.0	44

#	Article	IF	CITATIONS
37	Physicochemical characteristics of the components of energetic condensed systems. Russian Journal of Physical Chemistry B, 2010, 4, 916-922.	0.2	11
38	Influence of Particle Size and Mixing Technology on Combustion of HMX/Al Compositions. Propellants, Explosives, Pyrotechnics, 2010, 35, 226-232.	1.0	38
39	The structure of particles and combustion parameters of compositions with nanoaluminum. Russian Journal of Physical Chemistry B, 2008, 2, 463-469.	0.2	0