Yidong Bai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2852139/publications.pdf

Version: 2024-02-01

159585 123424 4,557 62 30 61 citations h-index g-index papers 65 65 65 7064 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq1 1 0.784314 rgBT /Ov	erlock 10	Tf 50 742 To
2	Mitochondrial Respiratory Complex I: Structure, Function and Implication in Human Diseases. Current Medicinal Chemistry, 2009, 16, 1266-1277.	2.4	256
3	Cytochrome c oxidase subunit IV is essential for assembly and respiratory function of the enzyme complex. Journal of Bioenergetics and Biomembranes, 2006, 38, 283-291.	2.3	255
4	Implications of mitochondrial DNA mutations and mitochondrial dysfunction in tumorigenesis. Cell Research, 2009, 19, 802-815.	12.0	234
5	A heteroplasmic, not homoplasmic, mitochondrial DNA mutation promotes tumorigenesis via alteration in reactive oxygen species generation and apoptosis. Human Molecular Genetics, 2009, 18, 1578-1589.	2.9	205
6	Protein Phosphorylation and Prevention of Cytochrome Oxidase Inhibition by ATP: Coupled Mechanisms of Energy Metabolism Regulation. Cell Metabolism, 2011, 13, 712-719.	16.2	173
7	Mitochondrial respiratory complex I dysfunction promotes tumorigenesis through ROS alteration and AKT activation. Human Molecular Genetics, 2011, 20, 4605-4616.	2.9	129
8	An Assembled Complex IV Maintains the Stability and Activity of Complex I in Mammalian Mitochondria. Journal of Biological Chemistry, 2007, 282, 17557-17562.	3.4	112
9	Tight Control of Respiration by NADH Dehydrogenase ND5 Subunit Gene Expression in Mouse Mitochondria. Molecular and Cellular Biology, 2000, 20, 805-815.	2.3	110
10	Lack of Complex I Activity in Human Cells Carrying a Mutation in MtDNA-encoded ND4 Subunit Is Corrected by theSaccharomyces cerevisiae NADH-Quinone Oxidoreductase (NDI1) Gene. Journal of Biological Chemistry, 2001, 276, 38808-38813.	3.4	104
11	The mitochondrial DNA 4,977-bp deletion and its implication in copy number alteration in colorectal cancer. BMC Medical Genetics, 2011, 12, 8.	2.1	103
12	Revisiting the mouse mitochondrial DNA sequence. Nucleic Acids Research, 2003, 31, 5349-5355.	14.5	101
13	Cancer type-specific modulation of mitochondrial haplogroups in breast, colorectal and thyroid cancer. BMC Cancer, 2010, 10, 421.	2.6	88
14	Respiratory supercomplexes: structure, function and assembly. Protein and Cell, 2013, 4, 582-590.	11.0	70
15	A nonapoptotic role for CASP2/caspase 2. Autophagy, 2014, 10, 1054-1070.	9.1	63
16	Interval and continuous exercise overcome memory deficits related to \hat{l}^2 -Amyloid accumulation through modulating mitochondrial dynamics. Behavioural Brain Research, 2019, 376, 112171.	2.2	53
17	Mitochondrial metabolites extend lifespan. Aging Cell, 2016, 15, 336-348.	6.7	52
18	The Role of Mitochondria in T-2 Toxin-Induced Human Chondrocytes Apoptosis. PLoS ONE, 2014, 9, e108394.	2.5	49

#	Article	IF	Citations
19	Melatonin inhibits lung cancer development by reversing the Warburg effect via stimulating the SIRT3/PDH axis. Journal of Pineal Research, 2021, 71, e12755.	7.4	48
20	Association of Mitochondrial DNA Haplogroups with Exceptional Longevity in a Chinese Population. PLoS ONE, 2009, 4, e6423.	2.5	45
21	Role of mtDNA Haplogroups in the Prevalence of Knee Osteoarthritis in a Southern Chinese Population. International Journal of Molecular Sciences, 2014, 15, 2646-2659.	4.1	44
22	Yeast NDI1 improves oxidative phosphorylation capacity and increases protection against oxidative stress and cell death in cells carrying a Leber's hereditary optic neuropathy mutation. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2007, 1772, 533-542.	3.8	40
23	Mitochondrial DNA haplogroups modify the risk of osteoarthritis by altering mitochondrial function and intracellular mitochondrial signals. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 829-836.	3.8	38
24	Genetic and Functional Analysis of Mitochondrial DNA-Encoded Complex I Genes. Annals of the New York Academy of Sciences, 2004, 1011, 272-283.	3.8	37
25	Evaluating mitochondrial DNA in cancer occurrence and development. Annals of the New York Academy of Sciences, 2010, 1201, 26-33.	3 . 8	37
26	Physiology and Pathophysiology of Mitochondrial DNA. Advances in Experimental Medicine and Biology, 2012, 942, 39-51.	1.6	37
27	Mitochondrial Common Deletion, a Potential Biomarker for Cancer Occurrence, Is Selected against in Cancer Background: A Meta-Analysis of 38 Studies. PLoS ONE, 2013, 8, e67953.	2.5	37
28	Evaluating mitochondrial DNA in patients with breast cancer and benign breast disease. Journal of Cancer Research and Clinical Oncology, 2011, 137, 669-675.	2.5	36
29	Nuclear Suppression of Mitochondrial Defects in Cells without the ND6 Subunit. Molecular and Cellular Biology, 2006, 26, 1077-1086.	2.3	32
30	Biochemical evidence for a mitochondrial genetic modifier in the phenotypic manifestation of Leber's hereditary optic neuropathy-associated mitochondrial DNA mutation. Human Molecular Genetics, 2016, 25, 3613-3625.	2.9	32
31	Respiratory supercomplexes plasticity and implications. Frontiers in Bioscience - Landmark, 2015, 20, 621-634.	3.0	30
32	Aging-associated mitochondrial DNA mutations alter oxidative phosphorylation machinery and cause mitochondrial dysfunctions. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 2266-2273.	3.8	30
33	Thioredoxin overexpression in mitochondria showed minimum effects on aging and age-related diseases in male C57BL/6 mice Aging Pathobiology and Therapeutics, 2020, 2, 20-31.	0.5	30
34	Redox regulation by SOD2 modulates colorectal cancer tumorigenesis through AMPKâ€mediated energy metabolism. Molecular Carcinogenesis, 2020, 59, 545-556.	2.7	28
35	Emerging model systems and treatment approaches for Leber's hereditary optic neuropathy: Challenges and opportunities. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165743.	3 . 8	27
36	Mitophagy activation repairs Leber's hereditary optic neuropathy-associated mitochondrial dysfunction and improves cell survival. Human Molecular Genetics, 2019, 28, 422-433.	2.9	26

#	Article	IF	CITATIONS
37	An update on complex I assembly: the assembly of players. Journal of Bioenergetics and Biomembranes, 2014, 46, 323-328.	2.3	25
38	A novel sweetpotato RING-H2 type E3 ubiquitin ligase gene IbATL38 enhances salt tolerance in transgenic Arabidopsis. Plant Science, 2021, 304, 110802.	3.6	25
39	Analysis of mitochondrial DNA mutations in D-loop region in thyroid lesions. Biochimica Et Biophysica Acta - General Subjects, 2010, 1800, 271-274.	2.4	24
40	Mitochondrial common deletion is elevated in blood of breast cancer patients mediated by oxidative stress. Mitochondrion, 2016, 26, 104-112.	3.4	24
41	Genetic and Functional Analysis of Mitochondrial DNA-Encoded Complex I Genes., 2004, 1011, 272-283.		23
42	Specific point mutations may not accumulate with aging in the mouse mitochondrial DNA control region. Gene, 2005, 350, 193-199.	2.2	19
43	Exercise intolerance and developmental delay associated with a novel mitochondrial ND5 mutation. Scientific Reports, 2015, 5, 10480.	3.3	19
44	Thioredoxin overexpression in both the cytosol and mitochondria accelerates age-related disease and shortens lifespan in male C57BL/6 mice. GeroScience, 2018, 40, 453-468.	4.6	18
45	Comparative bioenergetic study of neuronal and muscle mitochondria during aging. Free Radical Biology and Medicine, 2013, 63, 30-40.	2.9	17
46	Redefining the roles of mitochondrial DNA-encoded subunits in respiratory Complex I assembly. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 1531-1539.	3.8	17
47	Mitochondrial chaperones in human health and disease. Free Radical Biology and Medicine, 2022, 179, 363-374.	2.9	17
48	Mitochondrial DNA mutations in the D-loop region may not be frequent in cervical cancer: a discussion on pitfalls in mitochondrial DNA studies. Journal of Cancer Research and Clinical Oncology, 2009, 135, 649-651.	2.5	14
49	Diagnostic value of circulating cell-free mtDNA in patients with suspected thyroid cancer: ND4/ND1 ratio as a new potential plasma marker. Mitochondrion, 2020, 55, 145-153.	3.4	14
50	Restoration of Mitochondrial Function in Cells with Complex I Deficiency. Annals of the New York Academy of Sciences, 2005, 1042, 25-35.	3.8	12
51	Cyclophilin D over-expression increases mitochondrial complex III activity and accelerates supercomplex formation. Archives of Biochemistry and Biophysics, 2017, 613, 61-68.	3.0	12
52	Generation and bioenergetic analysis of cybrids containing mitochondrial DNA from mouse skeletal muscle during aging. Nucleic Acids Research, 2010, 38, 1913-1921.	14.5	11
53	The interaction between mitochondria and oncoviruses. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 481-487.	3.8	9
54	Oncocytic tumors are marked by enhanced mitochondrial content and mtDNA mutations of complex I in Chinese patients. Mitochondrion, 2019, 45, 1-6.	3.4	8

#	Article	IF	CITATIONS
55	BHRF1 Enhances EBV Mediated Nasopharyngeal Carcinoma Tumorigenesis through Modulating Mitophagy Associated with Mitochondrial Membrane Permeabilization Transition. Cells, 2020, 9, 1158.	4.1	8
56	Analysis of mitochondrial DNA variations in a Chinese family with spinocerebellar ataxia. Journal of Clinical Neuroscience, 2012, 19, 60-64.	1.5	5
57	Tissue-specific implications of mitochondrial alterations in aging. Frontiers in Bioscience - Elite, 2013, E5, 734-747.	1.8	4
58	Thioredoxin and aging: What have we learned from the survival studies?. Aging Pathobiology and Therapeutics, 2020, 2, 126-133.	0.5	4
59	Creating Cell Model 2.0 Using Patient Samples Carrying a Pathogenic Mitochondrial DNA Mutation: iPSC Approach for LHON. Methods in Molecular Biology, 2021, , .	0.9	3
60	Difference in apoptosis-associated genes expression profiling and immunohistology analysis between Kashin-Beck disease and primary osteoarthritis. Science Bulletin, 2014, 59, 833-839.	1.7	2
61	Dataset of mitochondrial genome variants in oncocytic tumors. Data in Brief, 2018, 17, 1149-1152.	1.0	1
62	The implications of mitochondria in doxorubicin treatment of cancer in the context of traditional and modern medicine. Traditional Medicine and Modern Medicine, 2020, 03, 239-254.	0.2	0