David F Meaney

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2851954/publications.pdf

Version: 2024-02-01

140 papers 12,671 citations

28736 57 h-index 107 g-index

144 all docs

144 docs citations

144 times ranked 12441 citing authors

#	Article	IF	CITATIONS
1	Plasticity impairment exposes <scp>CA3</scp> vulnerability in a hippocampal network model of mild traumatic brain injury. Hippocampus, 2022, 32, 231-250.	0.9	8
2	A multilayer network model of neuron-astrocyte populations in vitro reveals mGluR5 inhibition is protective following traumatic injury. Network Neuroscience, 2022, 6, 499-527.	1.4	2
3	Learning Environments and Evidence-Based Practices in Bioengineering and Biomedical Engineering. Biomedical Engineering Education, 2022, 2, 1-16.	0.6	6
4	Plasma Neurofilament Light and Glial Fibrillary Acidic Protein Levels over Thirty Days in a Porcine Model of Traumatic Brain Injury. Journal of Neurotrauma, 2022, 39, 935-943.	1.7	5
5	An interdisciplinary computational model for predicting traumatic brain injury: Linking biomechanics and functional neural networks. Neurolmage, 2022, 251, 119002.	2.1	5
6	Detection of astrocytic tau pathology facilitates recognition of chronic traumatic encephalopathy neuropathologic change. Acta Neuropathologica Communications, 2022, 10, 50.	2.4	13
7	Ultrasensitive Single Extracellular Vesicle Detection Using High Throughput Droplet Digital Enzyme-Linked Immunosorbent Assay. Nano Letters, 2022, 22, 4315-4324.	4.5	26
8	Inducing different severities of traumatic brain injury in Drosophila using a piezoelectric actuator. Nature Protocols, 2021, 16, 263-282.	5.5	15
9	NMDA Receptor Alterations After Mild Traumatic Brain Injury Induce Deficits in Memory Acquisition and Recall. Neural Computation, 2021, 33, 67-95.	1.3	9
10	Regional Neurodegeneration in vitro: The Protective Role of Neural Activity. Frontiers in Computational Neuroscience, 2021, 15, 580107.	1.2	2
11	COllaborative Neuropathology NEtwork Characterizing ouTcomes of TBI (CONNECT-TBI). Acta Neuropathologica Communications, 2021, 9, 32.	2.4	13
12	Cytosolic PSD-95 interactor alters functional organization of neural circuits and AMPA receptor signaling independent of PSD-95 binding. Network Neuroscience, 2021, 5, 166-197.	1.4	6
13	Extracellular vesicles as distinct biomarker reservoirs for mild traumatic brain injury diagnosis. Brain Communications, 2021, 3, fcab151.	1.5	19
14	Multi-Dimensional Mapping of Brain-Derived Extracellular Vesicle MicroRNA Biomarker for Traumatic Brain Injury Diagnostics. Journal of Neurotrauma, 2020, 37, 2424-2434.	1.7	50
15	Direct Observation of Low Strain, High Rate Deformation of Cultured Brain Tissue During Primary Blast. Annals of Biomedical Engineering, 2020, 48, 1196-1206.	1.3	13
16	Neurodegeneration exposes firing rate dependent effects on oscillation dynamics in computational neural networks. PLoS ONE, 2020, 15, e0234749.	1.1	10
17	Concussion increases CA1 activity during prolonged inactivity in a familiar environment. Experimental Neurology, 2020, 334, 113435.	2.0	1
18	Clinical Applications of Extracellular Vesicles in the Diagnosis and Treatment of Traumatic Brain Injury. Journal of Neurotrauma, 2020, 37, 2045-2056.	1.7	25

#	Article	IF	CITATIONS
19	Neuronal Degeneration Impairs Rhythms Between Connected Microcircuits. Frontiers in Computational Neuroscience, 2020, 14, 18.	1.2	14
20	Dynamic neural and glial responses of a head-specific model for traumatic brain injury in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17269-17277.	3.3	36
21	Predicting Concussion Outcome by Integrating Finite Element Modeling and Network Analysis. Frontiers in Bioengineering and Biotechnology, 2020, 8, 309.	2.0	24
22	A Multibody Model for Predicting Spatial Distribution of Human Brain Deformation Following Impact Loading. Journal of Biomechanical Engineering, 2020, 142 , .	0.6	6
23	Mechanoporation is a potential indicator of tissue strain and subsequent degeneration following experimental traumatic brain injury. Clinical Biomechanics, 2019, 64, 2-13.	0.5	31
24	Dynamin and reverse-mode sodium calcium exchanger blockade confers neuroprotection from diffuse axonal injury. Cell Death and Disease, 2019, 10, 727.	2.7	17
25	A Role for Postsynaptic Density 95 and Its Binding Partners in Models of Traumatic Brain Injury. Journal of Neurotrauma, 2019, 36, 2129-2138.	1.7	16
26	Primum non nocere: a call for balance when reporting on CTE. Lancet Neurology, The, 2019, 18, 231-233.	4.9	48
27	Mechanical disruption of the blood–brain barrier following experimental concussion. Acta Neuropathologica, 2018, 135, 711-726.	3.9	116
28	Pre-Clinical Testing of Therapies for Traumatic Brain Injury. Journal of Neurotrauma, 2018, 35, 2737-2754.	1.7	68
29	Cypin: A novel target for traumatic brain injury. Neurobiology of Disease, 2018, 119, 13-25.	2.1	11
30	Phosphodiesterase-4 inhibition restored hippocampal long term potentiation after primary blast. Experimental Neurology, 2017, 293, 91-100.	2.0	15
31	Autaptic Connections Shift Network Excitability and Bursting. Scientific Reports, 2017, 7, 44006.	1.6	39
32	Primary Blast Injury Depressed Hippocampal Long-Term Potentiation through Disruption of Synaptic Proteins. Journal of Neurotrauma, 2017, 34, 1063-1073.	1.7	28
33	A Porcine Model of Traumatic Brain Injury via Head Rotational Acceleration. Methods in Molecular Biology, 2016, 1462, 289-324.	0.4	89
34	Primary blast injury causes cognitive impairments and hippocampal circuit alterations. Experimental Neurology, 2016, 283, 16-28.	2.0	29
35	Isolated Primary Blast Inhibits Long-Term Potentiation in Organotypic Hippocampal Slice Cultures. Journal of Neurotrauma, 2016, 33, 652-661.	1.7	29
36	Beneficial Effects of Early mTORC1 Inhibition after Traumatic Brain Injury. Journal of Neurotrauma, 2016, 33, 183-193.	1.7	24

#	Article	IF	CITATIONS
37	Primary Blast Exposure Increases Hippocampal Vulnerability to Subsequent Exposure: Reducing Long-Term Potentiation. Journal of Neurotrauma, 2016, 33, 1901-1912.	1.7	29
38	Time Course and Size of Blood–Brain Barrier Opening in a Mouse Model of Blast-Induced Traumatic Brain Injury. Journal of Neurotrauma, 2016, 33, 1202-1211.	1.7	49
39	Alterations in Hippocampal Network Activity after <i>In Vitro</i> Traumatic Brain Injury. Journal of Neurotrauma, 2015, 32, 1011-1019.	1.7	32
40	Automated quantification of neuronal networks and single-cell calcium dynamics using calcium imaging. Journal of Neuroscience Methods, 2015, 243, 26-38.	1.3	145
41	Animal models of traumatic brain injury. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2015, 127, 115-128.	1.0	127
42	Cellular biomechanics of central nervous system injury. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2015, 127, 105-114.	1.0	18
43	Dexamethasone Potentiates in <i>Vitro</i> Blood-Brain Barrier Recovery after Primary Blast Injury by Glucocorticoid Receptor-Mediated Upregulation of ZO-1 Tight Junction Protein. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 1191-1198.	2.4	73
44	Biomechanics of Brain Injury: Looking to the Future. , 2015, , 247-257.		1
45	An open-source toolbox for automated phenotyping of mice in behavioral tasks. Frontiers in Behavioral Neuroscience, 2014, 8, 349.	1.0	92
46	The Mechanics of Traumatic Brain Injury: A Review of What We Know and What We Need to Know for Reducing Its Societal Burden. Journal of Biomechanical Engineering, 2014, 136, 021008.	0.6	179
47	Significant Head Accelerations Can Influence Immediate Neurological Impairments in a Murine Model of Blast-Induced Traumatic Brain Injury. Journal of Biomechanical Engineering, 2014, 136, 091004.	0.6	49
48	Single-Neuron NMDA Receptor Phenotype Influences Neuronal Rewiring and Reintegration following Traumatic Injury. Journal of Neuroscience, 2014, 34, 4200-4213.	1.7	35
49	Isolated Primary Blast Alters Neuronal Function with Minimal Cell Death in Organotypic Hippocampal Slice Cultures. Journal of Neurotrauma, 2014, 31, 1202-1210.	1.7	43
50	A Modified Controlled Cortical Impact Technique to Model Mild Traumatic Brain Injury Mechanics in Mice. Frontiers in Neurology, 2014, 5, 100.	1.1	63
51	Repeated Primary Blast Injury Causes Delayed Recovery, but not Additive Disruption, in an <i>In Vitro</i> Blood–Brain Barrier Model. Journal of Neurotrauma, 2014, 31, 951-960.	1.7	28
52	Brain injuryâ€induced proteolysis is reduced in a novel calpastatinâ€overexpressing transgenic mouse. Journal of Neurochemistry, 2013, 125, 909-920.	2.1	26
53	Antagonism of purinergic signalling improves recovery from traumatic brain injury. Brain, 2013, 136, 65-80.	3.7	73
54	Engraftment of nonintegrating neural stem cells differentially perturbs cortical activity in a dose-dependent manner. Molecular Therapy, 2013, 21, 2258-2267.	3.7	6

#	Article	IF	Citations
55	Blood-Brain Barrier Dysfunction after Primary Blast Injury <i>in vitro</i> . Journal of Neurotrauma, 2013, 30, 1652-1663.	1.7	54
56	<i>In Vitro</i> Stretch Injury Induces Time- and Severity-Dependent Alterations of STEP Phosphorylation and Proteolysis in Neurons. Journal of Neurotrauma, 2012, 29, 1982-1998.	1.7	6
57	Mitochondrial Injury after Mechanical Stretch of Cortical Neurons <i>in vitro</i> : Biomarkers of Apoptosis and Selective Peroxidation of Anionic Phospholipids. Journal of Neurotrauma, 2012, 29, 776-788.	1.7	39
58	N-Methyl-d-aspartate Receptor Mechanosensitivity Is Governed by C Terminus of NR2B Subunit. Journal of Biological Chemistry, 2012, 287, 4348-4359.	1.6	58
59	Short-Duration Treatment with the Calpain Inhibitor MDL-28170 Does Not Protect Axonal Transport in an <i>in Vivo</i> Model of Traumatic Axonal Injury. Journal of Neurotrauma, 2012, 29, 445-451.	1.7	12
60	Mechanisms of calpain mediated proteolysis of voltage gated sodium channel αâ€subunits following ⟨i⟩in vitro⟨ i⟩ dynamic stretch injury. Journal of Neurochemistry, 2012, 121, 793-805.	2.1	45
61	NR2A and NR2B subunits differentially mediate MAP kinase signaling and mitochondrial morphology following excitotoxic insult. Neurochemistry International, 2012, 60, 506-516.	1.9	52
62	A Multiscale Approach to Blast Neurotrauma Modeling: Part II: Methodology for Inducing Blast Injury to in vitro Models. Frontiers in Neurology, 2012, 3, 23.	1.1	59
63	A Multiscale Approach to Blast Neurotrauma Modeling: Part I – Development of Novel Test Devices for in vivo and in vitro Blast Injury Models. Frontiers in Neurology, 2012, 3, 46.	1.1	49
64	NMDA receptor mediated phosphorylation of GluR1 subunits contributes to the appearance of calcium-permeable AMPA receptors after mechanical stretch injury. Neurobiology of Disease, 2012, 46, 646-654.	2.1	31
65	Dynamic Changes in Neural Circuit Topology Following Mild Mechanical Injury In Vitro. Annals of Biomedical Engineering, 2012, 40, 23-36.	1.3	24
66	Perspectives on the Role of Bioengineering in Neurotrauma Research. Journal of Neurotrauma, 2011, 28, 2201-2202.	1.7	3
67	Mild Traumatic Brain Injury and Diffuse Axonal Injury in Swine. Journal of Neurotrauma, 2011, 28, 1747-1755.	1.7	219
68	Biomechanics of Concussion. Clinics in Sports Medicine, 2011, 30, 19-31.	0.9	283
69	Exogenous α-Synuclein Fibrils Induce Lewy Body Pathology Leading to Synaptic Dysfunction and Neuron Death. Neuron, 2011, 72, 57-71.	3.8	1,249
70	Computational Investigation of the Changing Patterns of Subtype Specific NMDA Receptor Activation during Physiological Glutamatergic Neurotransmission. PLoS Computational Biology, 2011, 7, e1002106.	1.5	19
71	Biomechanical Basis of Traumatic Brain Injury. , 2011, , 3277-3287.		8
72	Calpain Mediates Proteolysis of the Voltage-Gated Sodium Channel α-Subunit. Journal of Neuroscience, 2009, 29, 10350-10356.	1.7	80

#	Article	IF	Citations
73	Mechanically Induced Reactive Gliosis Causes ATP-Mediated Alterations in Astrocyte Stiffness. Journal of Neurotrauma, 2009, 26, 789-797.	1.7	56
74	<i>In-Vitro</i> Approaches for Studying Blast-Induced Traumatic Brain Injury. Journal of Neurotrauma, 2009, 26, 861-876.	1.7	119
75	Immediate short-duration hypothermia provides long-term protection in an in vivo model of traumatic axonal injury. Experimental Neurology, 2009, 215, 119-127.	2.0	36
76	Transcriptome transfer produces a predictable cellular phenotype. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7624-7629.	3.3	86
77	MECHANICALLY INDUCED REACTIVE GLIOSIS CAUSES ATP-MEDIATED ALTERATIONS IN ASTROCYTE STIFFNESS. Journal of Neurotrauma, 2009, 26, 090330061141047.	1.7	30
78	Hemostatic and neuroprotective effects of human recombinant activated factor VII therapy after traumatic brain injury in pigs. Experimental Neurology, 2008, 210, 645-655.	2.0	24
79	Calcium-Permeable AMPA Receptors Appear in Cortical Neurons after Traumatic Mechanical Injury and Contribute to Neuronal Fate. Journal of Neurotrauma, 2008, 25, 1207-1216.	1.7	93
80	Cytoplasmic BK _{Ca} channel intron-containing mRNAs contribute to the intrinsic excitability of hippocampal neurons. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1901-1906.	3.3	69
81	mGluR5 stimulates gliotransmission in the nucleus accumbens. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1995-2000.	3.3	210
82	Linking impact to cellular and molecular sequelae of CNS injury: Modeling in vivo complexity with in vitro simplicity. Progress in Brain Research, 2007, 161, 27-39.	0.9	24
83	Enhanced Astrocytic Ca ²⁺ Signals Contribute to Neuronal Excitotoxicity after Status Epilepticus. Journal of Neuroscience, 2007, 27, 10674-10684.	1.7	248
84	Matrices with Compliance Comparable to that of Brain Tissue Select Neuronal over Glial Growth in Mixed Cortical Cultures. Biophysical Journal, 2006, 90, 3012-3018.	0.2	659
85	Pharmacologically induced calcium oscillations protect neurons from increases in cytosolic calcium after trauma. Journal of Neurochemistry, 2006, 97, 462-474.	2.1	34
86	Development of transplantable nervous tissue constructs comprised of stretch-grown axons. Journal of Neuroscience Methods, 2006, 153, 95-103.	1.3	77
87	Traumatic mechanical injury to the hippocampus in vitro causes regional caspase-3 and calpain activation that is influenced by NMDA receptor subunit composition. Neurobiology of Disease, 2006, 22, 165-176.	2.1	80
88	Mechanisms and Consequences of Neuronal Stretch Injury In Vitro Differ with the Model of Trauma. Journal of Neurotrauma, 2006, 23, 193-204.	1.7	113
89	Temporal Window of Vulnerability to Repetitive Experimental Concussive Brain Injury. Neurosurgery, 2005, 56, 364-374.	0.6	274
90	Should corticosteroids be used to treat traumatic brain injury?. Nature Clinical Practice Neurology, 2005, 1, 74-75.	2.7	0

#	Article	IF	CITATIONS
91	Cellular Basis for the Nonlinear Constitutive Properties of Brain Tissue. , 2005, , 291-304.		O
92	Effect of Acute Calcium Influx after Mechanical Stretch Injury In Vitro on the Viability of Hippocampal Neurons. Journal of Neurotrauma, 2004, 21, 61-72.	1.7	102
93	A Quasi-Linear, Viscoelastic, Structural Model of the Plantar Soft Tissue With Frequency-Sensitive Damping Properties. Journal of Biomechanical Engineering, 2004, 126, 831-837.	0.6	26
94	Traumatic Axonal Injury Induces Proteolytic Cleavage of the Voltage-Gated Sodium Channels Modulated by Tetrodotoxin and Protease Inhibitors. Journal of Neuroscience, 2004, 24, 4605-4613.	1.7	201
95	Extreme Stretch Growth of Integrated Axons. Journal of Neuroscience, 2004, 24, 7978-7983.	1.7	249
96	Methodological Considerations Regarding Single-Cell Gene Expression Profiling for Brain Injury. Neurochemical Research, 2004, 29, 1113-1121.	1.6	17
97	A Device to Study the Initiation and Propagation of Calcium Transients in Cultured Neurons After Mechanical Stretch. Annals of Biomedical Engineering, 2004, 32, 1546-1559.	1.3	55
98	Long-Term Accumulation of Amyloid- \hat{l}^2 , \hat{l}^2 -Secretase, Presenilin-1, and Caspase-3 in Damaged Axons Following Brain Trauma. American Journal of Pathology, 2004, 165, 357-371.	1.9	245
99	Relationship between structural modeling and hyperelastic material behavior: application to CNS white matter. Biomechanics and Modeling in Mechanobiology, 2003, 1, 279-293.	1.4	88
100	Traumatic Axonal Injury Results in Biphasic Calpain Activation and Retrograde Transport Impairment in Mice. Journal of Cerebral Blood Flow and Metabolism, 2003, 23, 34-42.	2.4	148
101	Modeling of Microstructural Kinematics During Simple Elongation of Central Nervous System Tissue. Journal of Biomechanical Engineering, 2003, 125, 798-804.	0.6	57
102	Diffuse Axonal Injury in Head Trauma. Journal of Head Trauma Rehabilitation, 2003, 18, 307-316.	1.0	438
103	Traumatic Axonal Injury Results in Biphasic Calpain Activation and Retrograde Transport Impairment in Mice. Journal of Cerebral Blood Flow and Metabolism, 2003, , 34-42.	2.4	67
104	Roller Coasters, G Forces, and Brain Trauma: On the Wrong Track?. Journal of Neurotrauma, 2002, 19, 1117-1120.	1.7	42
105	High-Field Proton Magnetic Resonance Spectroscopy of a Swine Model for Axonal Injury. Journal of Neurochemistry, 2002, 70, 2038-2044.	2.1	69
106	Expression profiling following traumatic brain injury: a review. Neurochemical Research, 2002, 27, 1147-1155.	1.6	53
107	A New Strategy to Produce Sustained Growth of Central Nervous System Axons: Continuous Mechanical Tension. Tissue Engineering, 2001, 7, 131-139.	4.9	109
108	Traumatic Axonal Injury Induces Calcium Influx Modulated by Tetrodotoxin-Sensitive Sodium Channels. Journal of Neuroscience, 2001, 21, 1923-1930.	1.7	381

#	Article	IF	CITATIONS
109	Dynamic Stretch Correlates to Both Morphological Abnormalities and Electrophysiological Impairment in a Model of Traumatic Axonal Injury. Journal of Neurotrauma, 2001, 18, 499-511.	1.7	95
110	Tissue tears in the white matter after lateral fluid percussion brain injury in the rat: relevance to human brain injury. Acta Neuropathologica, 2000, 99, 117-124.	3.9	101
111	TUNEL-positive staining of surface contusions after fatal head injury in man. Acta Neuropathologica, 2000, 100, 537-545.	3.9	62
112	Tissue-Level Thresholds for Axonal Damage in an Experimental Model of Central Nervous System White Matter Injury. Journal of Biomechanical Engineering, 2000, 122, 615-622.	0.6	478
113	Dynamic Mechanical Stretch of Organotypic Brain Slice Cultures Induces Differential Genomic Expression: Relationship to Mechanical Parameters. Journal of Biomechanical Engineering, 2000, 122, 224-230.	0.6	55
114	Immediate coma following inertial brain injury dependent on axonal damage in the brainstem. Journal of Neurosurgery, 2000, 93, 315-322.	0.9	177
115	Numerical Model and Experimental Validation of Microcarrier Motion in a Rotating Bioreactor. Tissue Engineering, 2000, 6, 519-530.	4.9	56
116	Axonal Damage in Traumatic Brain Injury. Neuroscientist, 2000, 6, 483-495.	2.6	260
117	Traumatic injury induces differential expression of cell death genes in organotypic brain slice cultures determined by complementary DNA array hybridization. Neuroscience, 2000, 96, 131-139.	1.1	77
118	High Tolerance and Delayed Elastic Response of Cultured Axons to Dynamic Stretch Injury. Journal of Neuroscience, 1999, 19, 4263-4269.	1.7	261
119	Diffuse axonal pathology detected with magnetization transfer imaging following brain injury in the pig. Magnetic Resonance in Medicine, 1999, 41, 727-733.	1.9	54
120	Immediate in vivo response of the cortex and the blood–brain barrier following dynamic cortical deformation in the rat. Neuroscience Letters, 1999, 259, 5-8.	1.0	32
121	Experimental Investigation of Cerebral Contusion: Histopathological and Immunohistochemical Evaluation of Dynamic Cortical Deformation. Journal of Neuropathology and Experimental Neurology, 1999, 58, 153-164.	0.9	58
122	Evolution of Neurofilament Subtype Accumulation in Axons Following Diffuse Brain Injury in the Pig. Journal of Neuropathology and Experimental Neurology, 1999, 58, 588-596.	0.9	99
123	Accumulation of Amyloid \hat{l}^2 and Tau and the Formation of Neurofilament Inclusions Following Diffuse Brain Injury in the Pig. Journal of Neuropathology and Experimental Neurology, 1999, 58, 982-992.	0.9	236
124	Mechanical Characterization of an In Vitro Device Designed to Quantitatively Injure Living Brain Tissue. Annals of Biomedical Engineering, 1998, 26, 381-390.	1.3	70
125	<i>In Vitro</i> Central Nervous System Models of Mechanically Induced Trauma: A Review. Journal of Neurotrauma, 1998, 15, 911-928.	1.7	182
126	Magnetic Resonance Spectroscopy of Diffuse Brain Trauma in the Pig. Journal of Neurotrauma, 1998, 15, 665-674.	1.7	80

#	Article	IF	Citations
127	Finite Element Modeling Approaches for Predicting Injury in an Experimental Model of Severe Diffuse Axonal Injury. , 1998, , .		65
128	Characterization of Diffuse Axonal Pathology and Selective Hippocampal Damage following Inertial Brain Trauma in the Pig. Journal of Neuropathology and Experimental Neurology, 1997, 56, 822-834.	0.9	182
129	Magnetization Transfer Imaging of Diffuse Axonal Injury Following Experimental Brain Injury in the Pig: Characterization by Magnetization Transfer Ratio with Histopathologic Correlation. Journal of Computer Assisted Tomography, 1996, 20, 540-546.	0.5	80
130	A Model of Parasagittal Controlled Cortical Impact in the Mouse: Cognitive and Histopathologic Effects. Journal of Neurotrauma, 1995, 12, 169-178.	1.7	401
131	Biomechanical Analysis of Experimental Diffuse Axonal Injury. Journal of Neurotrauma, 1995, 12, 689-694.	1.7	223
132	New Magnetic Resonance Imaging Techniques for the Evaluation of Traumatic Brain Injury. Journal of Neurotrauma, 1995, 12, 573-577.	1.7	62
133	1995 William J. Stickel Gold Award. High strain rate tissue deformation. A theory on the mechanical etiology of diabetic foot ulcerations. Journal of the American Podiatric Medical Association, 1995, 85, 519-527.	0.2	36
134	Distribution of Forebrain Diffuse Axonal Injury Following Inertial Closed Head Injury in Miniature Swine. Experimental Neurology, 1994, 126, 291-298.	2.0	103
135	Modification of the Cortical Impact Model To Produce Axonal Injury in the Rat Cerebral Cortex. Journal of Neurotrauma, 1994, 11, 599-612.	1.7	76
136	Biomechanical Aspects of a Fluid Percussion Model of Brain Injury. Journal of Neurotrauma, 1992, 9, 311-322.	1.7	69
137	Biomechanical Characterization of the Constitutive Relationship for the Brainstem. , 0, , .		29
138	In Vivo Thresholds for Mechanical Injury to the Blood-Brain Barrier. , 0, , .		61
139	Defining Brain Mechanical Properties: Effects of Region, Direction, and Species. , 0, , .		38
140	Thresholds for Mechanical Injury to the in Vivo White Matter., 0,,.		4