Kimmo Mustonen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2851620/publications.pdf

Version: 2024-02-01

46 papers

1,180 citations

430874 18 h-index 34 g-index

48 all docs

48 docs citations

48 times ranked

1761 citing authors

#	Article	IF	CITATIONS
1	Largeâ€Diameter Carbon Nanotube Transparent Conductor Overcoming Performance–Yield Tradeoff. Advanced Functional Materials, 2022, 32, 2103397.	14.9	24
2	Graphene Lattices with Embedded Transition-Metal Atoms and Tunable Magnetic Anisotropy Energy: Implications for Spintronic Devices. ACS Applied Nano Materials, 2022, 5, 1562-1573.	5.0	13
3	Two-step implantation of gold into graphene. 2D Materials, 2022, 9, 025011.	4.4	10
4	Toward Exotic Layered Materials: 2D Cuprous Iodide. Advanced Materials, 2022, 34, e2106922.	21.0	28
5	Beam-driven dynamics of aluminium dopants in graphene. 2D Materials, 2022, 9, 035009.	4.4	8
6	Indirect measurement of the carbon adatom migration barrier on graphene. Carbon, 2022, 196, 596-601.	10.3	7
7	Stepâ€Byâ€Step Atomic Insights into Structural Reordering from 2D to 3D MoS 2. Advanced Functional Materials, 2021, 31, 2008395.	14.9	9
8	Highly efficient bilateral doping of single-walled carbon nanotubes. Journal of Materials Chemistry C, 2021, 9, 4514-4521.	5.5	17
9	Photon pair generation in ultra-thin carbon nanotube films without phase-matching. , 2021, , .		1
10	Atomic-Level Structural Engineering of Graphene on a Mesoscopic Scale. Nano Letters, 2021, 21, 5179-5185.	9.1	24
11	Single indium atoms and few-atom indium clusters anchored onto graphene via silicon heteroatoms. Microscopy and Microanalysis, 2021, 27, 3346-3347.	0.4	O
12	Single Indium Atoms and Few-Atom Indium Clusters Anchored onto Graphene via Silicon Heteroatoms. ACS Nano, 2021, 15, 14373-14383.	14.6	19
13	Graphene transparent electrodes. , 2021, , 487-516.		1
14	Hybrid Lowâ€Dimensional Carbon Allotropes Formed in Gas Phase. Advanced Functional Materials, 2020, 30, 2005016.	14.9	11
15	Transformation and Evaporation of Surface Adsorbents on a Graphene "Hot Plate― ACS Applied Materials & Interfaces, 2020, 12, 26313-26319.	8.0	3
16	Scalable growth of single-walled carbon nanotubes with a highly uniform structure. Nanoscale, 2020, 12, 12263-12267.	5.6	22
17	Low-temperature growth of carbon shells on gold and copper nanoparticles in transmission electron microscope. Carbon, 2020, 167, 541-547.	10.3	2
18	Mesoporous Single-Atom-Doped Graphene–Carbon Nanotube Hybrid: Synthesis and Tunable Electrocatalytic Activity for Oxygen Evolution and Reduction Reactions. ACS Catalysis, 2020, 10, 4647-4658.	11.2	100

#	Article	IF	CITATIONS
19	Tailoring Electronic and Magnetic Properties of Graphene by Phosphorus Doping. ACS Applied Materials & Samp; Interfaces, 2020, 12, 34074-34085.	8.0	20
20	2D Noble Gas Crystals Encapsulated in Few-layer Graphene. Microscopy and Microanalysis, 2020, 26, 1086-1089.	0.4	3
21	Electronâ€Beam Manipulation of Silicon Impurities in Singleâ€Walled Carbon Nanotubes. Advanced Functional Materials, 2019, 29, 1901327.	14.9	14
22	Electron-Beam Manipulation of Lattice Impurities in Graphene and Single-Walled Carbon Nanotubes. Microscopy and Microanalysis, 2019, 25, 938-939.	0.4	0
23	Substitutional Si Doping of Graphene and Nanotubes through Ion Irradiation-Induced Vacancies. Microscopy and Microanalysis, 2019, 25, 1574-1575.	0.4	0
24	Enhanced Tunneling in a Hybrid of Single-Walled Carbon Nanotubes and Graphene. ACS Nano, 2019, 13, 11522-11529.	14.6	23
25	Silicon Substitution in Nanotubes and Graphene via Intermittent Vacancies. Journal of Physical Chemistry C, 2019, 123, 13136-13140.	3.1	27
26	Atomic-Scale Deformations at the Interface of a Mixed-Dimensional van der Waals Heterostructure. ACS Nano, 2018, 12, 8512-8519.	14.6	19
27	Intrinsic core level photoemission of suspended monolayer graphene. Physical Review Materials, 2018, 2, .	2.4	15
28	Photonâ€Pair Generation with a 100 nm Thick Carbon Nanotube Film. Advanced Materials, 2017, 29, 1605978.	21.0	28
29	Dry and Direct Deposition of Aerosol-Synthesized Single-Walled Carbon Nanotubes by Thermophoresis. ACS Applied Materials & Samp; Interfaces, 2017, 9, 20738-20747.	8.0	42
30	Buckyball sandwiches. Science Advances, 2017, 3, e1700176.	10.3	50
31	Cleaning graphene: Comparing heat treatments in air and in vacuum. Physica Status Solidi - Rapid Research Letters, 2017, 11, 1700124.	2.4	61
32	Carbon Nanotubes: Photonâ€Pair Generation with a 100 nm Thick Carbon Nanotube Film (Adv. Mater.) Tj ETQq0	0 0 rgBT /	Oyerlock 10
33	Shear Banding Observed in Real-Time with a Laser Speckle Method. Conference Proceedings of the Society for Experimental Mechanics, 2017, , 327-333.	0.5	0
34	Highly individual SWCNTs for high performance thin film electronics. Carbon, 2016, 103, 228-234.	10.3	63
35	Uncovering the ultimate performance of single-walled carbon nanotube films as transparent conductors. Applied Physics Letters, 2015, 107, .	3.3	57
36	A reference material of single-walled carbon nanotubes: quantitative chirality assessment using optical absorption spectroscopy. RSC Advances, 2015, 5, 102974-102980.	3.6	15

3

#	Article	IF	CITATIONS
37	Toward the Limits of Uniformity of Mixed Metallicity SWCNT TFT Arrays with Spark-Synthesized and Surface-Density-Controlled Nanotube Networks. ACS Applied Materials & Samp; Interfaces, 2015, 7, 28134-28141.	8.0	11
38	Gas phase synthesis of non-bundled, small diameter single-walled carbon nanotubes with near-armchair chiralities. Applied Physics Letters, $2015,107,107$	3.3	54
39	Reinforcing randomly oriented transparent freestanding single-walled carbon nanotube films. Carbon, 2013, 62, 513-516.	10.3	4
40	Direct synthesis of high-quality single-walled carbon nanotubes by the physical nucleation of iron nanoparticles in an atmospheric pressure carbon monoxide flow. Carbon, 2012, 50, 5343-5345.	10.3	6
41	Synthesis of ZnO tetrapods for flexible and transparent UV sensors. Nanotechnology, 2012, 23, 095502.	2.6	40
42	Influence of the diameter of single-walled carbon nanotube bundles on the optoelectronic performance of dry-deposited thin films. Beilstein Journal of Nanotechnology, 2012, 3, 692-702.	2.8	19
43	Multifunctional Free-Standing Single-Walled Carbon Nanotube Films. ACS Nano, 2011, 5, 3214-3221.	14.6	300
44	Deformation, acoustic emission and ultrasound velocity during fatigue tests on paper. EPJ Web of Conferences, 2010, 6, 42016.	0.3	1
45	Ultrasonic stiffness measurements of single plant fibers during humidity cycling. , 2009, , .		2
46	P1E-5 Understanding Ultrasound-Induced Aluminum Oxide Breakage During Wirebonding. Proceedings IEEE Ultrasonics Symposium, 2007, , .	0.0	5