Paul Bertone

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/28512/paul-bertone-publications-by-year.pdf

Version: 2024-04-04

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

83	14,392	52	91
papers	citations	h-index	g-index
91 ext. papers	16,667 ext. citations	16.6 avg, IF	6.4 L-index

#	Paper	IF	Citations
83	StemBond hydrogels control the mechanical microenvironment for pluripotent stem cells. <i>Nature Communications</i> , 2021 , 12, 6132	17.4	4
82	Sox2 modulation increases nawe pluripotency plasticity. <i>IScience</i> , 2021 , 24, 102153	6.1	2
81	Glioblastomas acquire myeloid-affiliated transcriptional programs via epigenetic immunoediting to elicit immune evasion. <i>Cell</i> , 2021 , 184, 2454-2470.e26	56.2	35
80	The Role of BCL-2 Proteins in the Development of Castration-resistant Prostate Cancer and Emerging Therapeutic Strategies. <i>American Journal of Clinical Oncology: Cancer Clinical Trials</i> , 2021 , 44, 374-382	2.7	2
79	Distinct Molecular Trajectories Converge to Induce Naive Pluripotency. <i>Cell Stem Cell</i> , 2019 , 25, 388-400	5. :e %	16
78	Integrated analysis of single-cell embryo data yields a unified transcriptome signature for the human pre-implantation epiblast. <i>Development (Cambridge)</i> , 2018 , 145,	6.6	93
77	Single cell transcriptome analysis of human, marmoset and mouse embryos reveals common and divergent features of preimplantation development. <i>Development (Cambridge)</i> , 2018 , 145,	6.6	81
76	Gain of CTCF-Anchored Chromatin Loops Marks the Exit from Naive Pluripotency. <i>Cell Systems</i> , 2018 , 7, 482-495.e10	10.6	37
75	The Nucleosome Remodeling and Deacetylation Complex Modulates Chromatin Structure at Sites of Active Transcription to Fine-Tune Gene Expression. <i>Molecular Cell</i> , 2018 , 71, 56-72.e4	17.6	70
74	Tracking the embryonic stem cell transition from ground state pluripotency. <i>Development</i> (Cambridge), 2017 , 144, 1221-1234	6.6	150
73	Elevated FOXG1 and SOX2 in glioblastoma enforces neural stem cell identity through transcriptional control of cell cycle and epigenetic regulators. <i>Genes and Development</i> , 2017 , 31, 757-77	3 ^{12.6}	69
72	Epigenetic resetting of human pluripotency. <i>Development (Cambridge)</i> , 2017 , 144, 2748-2763	6.6	135
71	Nuclear Architecture Organized by Rif1 Underpins the Replication-Timing Program. <i>Molecular Cell</i> , 2016 , 61, 260-73	17.6	111
70	Myc Depletion Induces a Pluripotent Dormant State Mimicking Diapause. Cell, 2016, 164, 668-80	56.2	132
69	Naive Pluripotent Stem Cells Derived Directly from Isolated Cells of the Human Inner Cell Mass. <i>Stem Cell Reports</i> , 2016 , 6, 437-446	8	220
68	EphrinB2 drives perivascular invasion and proliferation of glioblastoma stem-like cells. <i>ELife</i> , 2016 , 5,	8.9	60
67	Sall4 controls differentiation of pluripotent cells independently of the Nucleosome Remodelling and Deacetylation (NuRD) complex. <i>Development (Cambridge)</i> , 2016 , 143, 3074-84	6.6	40

(2012-2015)

66	Glioblastoma Stem Cells Respond to Differentiation Cues but Fail to Undergo Commitment and Terminal Cell-Cycle Arrest. <i>Stem Cell Reports</i> , 2015 , 5, 829-842	8	64
65	Lineage-Specific Profiling Delineates the Emergence and Progression of Naive Pluripotency in Mammalian Embryogenesis. <i>Developmental Cell</i> , 2015 , 35, 366-82	10.2	253
64	The ability of inner-cell-mass cells to self-renew as embryonic stem cells is acquired following epiblast specification. <i>Nature Cell Biology</i> , 2014 , 16, 516-28	23.4	312
63	Citrullination regulates pluripotency and histone H1 binding to chromatin. <i>Nature</i> , 2014 , 507, 104-8	50.4	264
62	Resetting transcription factor control circuitry toward ground-state pluripotency in human. <i>Cell</i> , 2014 , 158, 1254-1269	56.2	585
61	Transcriptional diversity during lineage commitment of human blood progenitors. <i>Science</i> , 2014 , 345, 1251033	33.3	187
60	Identification of the missing pluripotency mediator downstream of leukaemia inhibitory factor. <i>EMBO Journal</i> , 2013 , 32, 2561-74	13	161
59	Assessment of transcript reconstruction methods for RNA-seq. <i>Nature Methods</i> , 2013 , 10, 1177-84	21.6	477
58	Systematic evaluation of spliced alignment programs for RNA-seq data. <i>Nature Methods</i> , 2013 , 10, 118	5- 9 1.6	371
57	The non-coding snRNA 7SK controls transcriptional termination, poising, and bidirectionality in embryonic stem cells. <i>Genome Biology</i> , 2013 , 14, R98	18.3	33
56	Towards practical, high-capacity, low-maintenance information storage in synthesized DNA. <i>Nature</i> , 2013 , 494, 77-80	50.4	501
55	SMIM1 underlies the Vel blood group and influences red blood cell traits. <i>Nature Genetics</i> , 2013 , 45, 54	2 <i>-56</i> 15	77
54	Widespread resetting of DNA methylation in glioblastoma-initiating cells suppresses malignant cellular behavior in a lineage-dependent manner. <i>Genes and Development</i> , 2013 , 27, 654-69	12.6	103
53	A high-content small molecule screen identifies sensitivity of glioblastoma stem cells to inhibition of polo-like kinase 1. <i>PLoS ONE</i> , 2013 , 8, e77053	3.7	44
52	NuRD suppresses pluripotency gene expression to promote transcriptional heterogeneity and lineage commitment. <i>Cell Stem Cell</i> , 2012 , 10, 583-94	18	168
51	Compound inheritance of a low-frequency regulatory SNP and a rare null mutation in exon-junction complex subunit RBM8A causes TAR syndrome. <i>Nature Genetics</i> , 2012 , 44, 435-9, S1-2	36.3	279
50	Digital transcriptome profiling of normal and glioblastoma-derived neural stem cells identifies genes associated with patient survival. <i>Genome Medicine</i> , 2012 , 4, 76	14.4	39
49	NuRD-mediated deacetylation of H3K27 facilitates recruitment of Polycomb Repressive Complex 2 to direct gene repression. <i>EMBO Journal</i> , 2012 , 31, 593-605	13	185

48	Genome-wide characterization of Foxa2 targets reveals upregulation of floor plate genes and repression of ventrolateral genes in midbrain dopaminergic progenitors. <i>Development (Cambridge)</i> , 2012 , 139, 2625-34	6.6	43
47	Exome sequencing identifies NBEAL2 as the causative gene for gray platelet syndrome. <i>Nature Genetics</i> , 2011 , 43, 735-7	36.3	224
46	Systematic comparison of microarray profiling, real-time PCR, and next-generation sequencing technologies for measuring differential microRNA expression. <i>Rna</i> , 2010 , 16, 991-1006	5.8	515
45	PeakAnalyzer: genome-wide annotation of chromatin binding and modification loci. <i>BMC Bioinformatics</i> , 2010 , 11, 415	3.6	183
44	Mapping organelle proteins and protein complexes in Drosophila melanogaster. <i>Journal of Proteome Research</i> , 2009 , 8, 2667-78	5.6	54
43	HTqPCR: high-throughput analysis and visualization of quantitative real-time PCR data in R. <i>Bioinformatics</i> , 2009 , 25, 3325-6	7.2	173
42	Modeling of C/EBPalpha mutant acute myeloid leukemia reveals a common expression signature of committed myeloid leukemia-initiating cells. <i>Cancer Cell</i> , 2008 , 13, 299-310	24.3	196
41	Genome-wide analysis reveals MOF as a key regulator of dosage compensation and gene expression in Drosophila. <i>Cell</i> , 2008 , 133, 813-28	56.2	125
40	Target hub proteins serve as master regulators of development in yeast. <i>Genes and Development</i> , 2006 , 20, 435-48	12.6	138
39	Transcriptional regulatory networks in bacteria: from input signals to output responses. <i>Current Opinion in Microbiology</i> , 2006 , 9, 511-9	7.9	84
38	Design optimization methods for genomic DNA tiling arrays. <i>Genome Research</i> , 2006 , 16, 271-81	9.7	41
37	Analysis of Genomic Tiling Microarrays for Transcript Mapping and the Identification of Transcription Factor Binding Sites. <i>Lecture Notes in Computer Science</i> , 2005 , 28-29	0.9	1
36	Advances in functional protein microarray technology. FEBS Journal, 2005, 272, 5400-11	5.7	141
35	Issues in the analysis of oligonucleotide tiling microarrays for transcript mapping. <i>Trends in Genetics</i> , 2005 , 21, 466-75	8.5	88
34	Applications of DNA tiling arrays to experimental genome annotation and regulatory pathway discovery. <i>Chromosome Research</i> , 2005 , 13, 259-74	4.4	58
33	Multi-species microarrays reveal the effect of sequence divergence on gene expression profiles. <i>Genome Research</i> , 2005 , 15, 674-80	9.7	139
32	Prospects and challenges in proteomics. <i>Plant Physiology</i> , 2005 , 138, 560-2	6.6	17
31	Global changes in STAT target selection and transcription regulation upon interferon treatments. <i>Genes and Development</i> , 2005 , 19, 2953-68	12.6	83

(2001-2004)

30	CREB binds to multiple loci on human chromosome 22. Molecular and Cellular Biology, 2004, 24, 3804-1	4 4.8	146
29	Fast optimal genome tiling with applications to microarray design and homology search. <i>Journal of Computational Biology</i> , 2004 , 11, 766-85	1.7	10
28	Global identification of human transcribed sequences with genome tiling arrays. <i>Science</i> , 2004 , 306, 22	4 2 5-563	868
27	The ENCODE (ENCyclopedia Of DNA Elements) Project. <i>Science</i> , 2004 , 306, 636-40	33.3	1692
26	Distribution of NF-kappaB-binding sites across human chromosome 22. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 12247-52	11.5	276
25	Identification of pseudogenes in the Drosophila melanogaster genome. <i>Nucleic Acids Research</i> , 2003 , 31, 1033-7	20.1	72
24	ExpressYourself: A modular platform for processing and visualizing microarray data. <i>Nucleic Acids Research</i> , 2003 , 31, 3477-82	20.1	34
23	The transcriptional activity of human Chromosome 22. <i>Genes and Development</i> , 2003 , 17, 529-40	12.6	226
22	SPINE 2: a system for collaborative structural proteomics within a federated database framework. <i>Nucleic Acids Research</i> , 2003 , 31, 2833-8	20.1	43
21	Identification of novel functional elements in the human genome. <i>Cold Spring Harbor Symposia on Quantitative Biology</i> , 2003 , 68, 317-22	3.9	1
20	An integrated approach for finding overlooked genes in yeast. <i>Nature Biotechnology</i> , 2002 , 20, 58-63	44.5	97
19	GeneCensus: genome comparisons in terms of metabolic pathway activity and protein family sharing. <i>Nucleic Acids Research</i> , 2002 , 30, 4574-82	20.1	14
18	Complex transcriptional circuitry at the G1/S transition in Saccharomyces cerevisiae. <i>Genes and Development</i> , 2002 , 16, 3017-33	12.6	201
17	Molecular fossils in the human genome: identification and analysis of the pseudogenes in chromosomes 21 and 22. <i>Genome Research</i> , 2002 , 12, 272-80	9.7	144
16	SNPs on human chromosomes 21 and 22 analysis in terms of protein features and pseudogenes. <i>Pharmacogenomics</i> , 2002 , 3, 393-402	2.6	14
15	Comprehensive analysis of amino acid and nucleotide composition in eukaryotic genomes, comparing genes and pseudogenes. <i>Nucleic Acids Research</i> , 2002 , 30, 2515-23	20.1	102
14	Fast Optimal Genome Tiling with Applications to Microarray Design and Homology Search. <i>Lecture Notes in Computer Science</i> , 2002 , 419-433	0.9	1
13	Integrative data mining: the new direction in bioinformatics. <i>IEEE Engineering in Medicine and Biology Magazine</i> , 2001 , 20, 33-40		25

12	SPINE: an integrated tracking database and data mining approach for identifying feasible targets in high-throughput structural proteomics. <i>Nucleic Acids Research</i> , 2001 , 29, 2884-98	20.1	89
11	Global analysis of protein activities using proteome chips. <i>Science</i> , 2001 , 293, 2101-5	33.3	1899
10	Analysis of yeast protein kinases using protein chips. <i>Nature Genetics</i> , 2000 , 26, 283-9	36.3	734
9	Computational Methods and Bioinformatic Tools769-904		
8	Single-cell transcriptome analysis of human, marmoset and mouse embryos reveals common and divergent features of preimplantation development		3
7	Mbd3 and deterministic reprogramming		2
6	Tracking the embryonic stem cell transition from ground state pluripotency		4
5	The Nucleosome Remodelling and Deacetylation complex restricts Mediator access to enhancers to control transcription		1
4	Epigenetic resetting of human pluripotency		1
3	Sox2 modulation increases nate pluripotency plasticity		1
2	Comparative analysis of neutrophil and monocyte epigenomes		2
1	StemBond hydrogels optimise the mechanical microenvironment for embryonic stem cells		1