Claudia Hernandez Aguilar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2850872/publications.pdf

Version: 2024-02-01

69 papers

510 citations

687363 13 h-index 18 g-index

70 all docs 70 docs citations

times ranked

70

386 citing authors

#	Article	IF	CITATIONS
1	Laser irradiation effects on maize seed field performance. Seed Science and Technology, 2006, 34, 193-197.	1.4	35
2	Photoacoustic Spectroscopy in the Optical Characterization of Foodstuff: A Review. Journal of Spectroscopy, 2019, 2019, 1-34.	1.3	35
3	Lentil sprouts: a nutraceutical alternative for the elaboration of bread. Journal of Food Science and Technology, 2020, 57, 1817-1829.	2.8	26
4	Bioestimulación láser en semillas y plantas. Gayana - Botanica, 2016, 73, 132-149.	0.2	19
5	The Optical Absorption Coefficient of Maize Seeds Investigated by Photoacoustic Spectroscopy. Food Biophysics, 2011, 6, 481-486.	3.0	18
6	Changes in chemical, viscoelastic, and textural properties of nixtamalized dough with nejayote. LWT - Food Science and Technology, 2015, 61, 496-502.	5.2	18
7	Thermal Effects of Laser Irradiation on Maize Seeds. International Agrophysics, 2015, 29, 147-156.	1.7	17
8	Evaluation of Wheat and Maize Seeds by Photoacoustic Microscopy. International Journal of Thermophysics, 2009, 30, 2036-2043.	2.1	16
9	Interactive system for painting artworks by regions using a robot. Robotics and Autonomous Systems, 2019, 121, 103263.	5.1	16
10	Characterization of Bean Seeds, Germination, and Phenolic Compounds of Seedlings by UV-C Radiation. Journal of Plant Growth Regulation, 2021, 40, 642-655.	5.1	15
11	Photoacoustic spectroscopy applied to the study of the influence of laser irradiation on corn seeds. European Physical Journal Special Topics, 2005, 125, 853-855.	0.2	14
12	Optical absorption coefficient of laser irradiated wheat seeds determined by photoacoustic spectroscopy. European Physical Journal: Special Topics, 2008, 153, 519-522.	2.6	14
13	SEMILLA DE MAÃZ BAJO LA INFLUENCIA DE IRRADIACIÓN DE CAMPOS ELECTROMAGNÉTICOS. Revista Fitotecnia Mexicana, 2010, 33, 183.	0.1	13
14	Seguimiento de Egresados en Tres Programas de MaestrÃa en una Escuela del Instituto Politécnico Nacional en México. Formacion Universitaria, 2012, 5, 41-52.	0.7	11
15	Characterization of Maize Grains with Different Pigmentation Investigated by Photoacoustic Spectroscopy. International Journal of Thermophysics, 2014, 35, 1933-1939.	2.1	11
16	The Optical Absorption Coefficient of Barley Seeds Investigated by Photoacoustic Spectroscopy and Their Effects by Laser Biostimulation. International Journal of Thermophysics, 2015, 36, 2389-2400.	2.1	11
17	Study of Thermal and Structural Properties of Starch Granules from Different Maize Genotypes. Food Biophysics, 2015, 10, 19-24.	3.0	11
18	The Optical Absorption Coefficient of Bean Seeds Investigated Using Photoacoustic Spectroscopy. International Journal of Thermophysics, 2015, 36, 835-843.	2.1	11

#	Article	IF	Citations
19	Specific heat of vegetable oils as a function of temperature obtained by adiabatic scanning calorimetry. Journal of Thermal Analysis and Calorimetry, 2017, 128, 523-531.	3.6	11
20	Determination of the Dependence of Thermal Diffusivity with Moringa Concentration by Thermal Lens as a Sensitive Experimental Technique. International Journal of Thermophysics, 2020, 41, 105.	2.1	11
21	Photoacoustic characterization of wheat bread mixed with Moringa oleifera Current Research in Food Science, 2021, 4, 521-531.	5.8	11
22	Absorption Peaks: \hat{l}_{+} , $\hat{A}\hat{l}^{2}$, $\hat{A}\hat{l}^{3}$ and Their Covariance with Age and Hemoglobin in Human Blood Samples Using Photoacoustic Spectroscopy. International Journal of Thermophysics, 2012, 33, 1827-1833.	2.1	10
23	Sustainability assessment of traditional maize (<i>Zea mays</i> L.) agroecosystem in Sierra Norte of Puebla, Mexico. Agroecology and Sustainable Food Systems, 2018, 42, 383-406.	1.9	10
24	Characterization of seeds with different moisture content by photoacoustic microscopy. Journal of Physics: Conference Series, 2010, 214, 012060.	0.4	9
25	Alternative Method to Characterize Corn Grain by Means of Photoacoustic Spectroscopy. International Journal of Thermophysics, 2013, 34, 1540-1548.	2.1	9
26	Effect of Nixtamalized Maize with Lime Water (Nejayote) on Rheological and Microbiological Properties of Masa. Journal of Food Processing and Preservation, 2017, 41, e12748.	2.0	9
27	The carotenoid content in seedlings of maize seeds irradiated by a 650 nm diode laser: Qualitative photoacoustic study. European Physical Journal: Special Topics, 2008, 153, 515-518.	2.6	8
28	Thermal and Tribological Properties of Jatropha Oil as Additive in Commercial Oil. International Journal of Thermophysics, 2017, 38, 1.	2.1	8
29	Photoacoustic Spectroscopy in the Characterization of Bread with Turmeric Addition. Food and Bioprocess Technology, 2020, 13, 2104-2119.	4.7	7
30	Thermal Changes of Maize Seed by Laser Irradiation. International Journal of Thermophysics, 2015, 36, 2401-2409.	2.1	6
31	Statistical Analysis of Photopyroelectric Signals using Histogram and Kernel Density Estimation for differentiation of Maize Seeds. International Journal of Thermophysics, 2016, 37, 1.	2.1	6
32	Photothermal Techniques Applied to the Thermal and Optical Characterization of Curcuma longa. International Journal of Thermophysics, 2018, 39, 1.	2.1	6
33	Thermal Effusivity of Vegetable Oils Obtained by a Photothermal Technique. International Journal of Thermophysics, 2014, 35, 1940-1945.	2.1	5
34	Depth Profiles in Maize (Zea mays L.) Seeds Studied by Photoacoustic Spectroscopy. International Journal of Thermophysics, 2015, 36, 891-899.	2.1	5
35	Photoacoustic Determination of Non-radiative Relaxation Time of Absorbing Centers in Maize Seeds. International Journal of Thermophysics, 2017, 38, 1.	2.1	5

 $_{36}$ Tissue Damage, Temperature, and pH Induced by Different Electrode Arrays on Potato Pieces (Solanum) Tj ETQq0 $_{2.8}^{0.0}$ rgBT /Oyerlock 10

#	Article	IF	Citations
37	Kolmogorov–Smirnov Test for Statistical Characterization of Photopyroelectric Signals Obtained from Maize Seeds. International Journal of Thermophysics, 2019, 40, 1.	2.1	5
38	Physical and chemical characterization of masa and tortillas from parental lines, crosses, and one hybrid. International Agrophysics, 2017, 31, 129-138.	1.7	4
39	Curcuma Longa Treatment Effect on Blood Samples of Rat with Hepatic Damage: A Photoacoustic Spectroscopy Application. International Journal of Thermophysics, 2018, 39, 1.	2.1	4
40	Biophysical methods used to generate tolerance to drought stress in seeds and plants: a review. International Agrophysics, 2022, 35, 389-410.	1.7	4
41	Thermal Properties of Jojoba Oil Between \$\$20,{^{circ }}hbox {C}\$\$ 20 \hat{a}^{\sim} C and \$\$45,{^{circ }}hbox {C}\$\$ 45 \hat{a}^{\sim} C. International Journal of Thermophysics, 2017, 38, 1.	2.1	3
42	Characterization of Aged Lettuce and Chard Seeds by Photothermal Techniques. International Journal of Thermophysics, 2018, 39, 1.	2.1	3
43	Evolution and characteristics of the transdisciplinary perspective in research: a literature review. Transdisciplinary Journal of Engineering & Science, $0,11,.$	0.1	3
44	Thermal Image of Coffee-Seed Germ Obtained by Photoacoustic Microscopy. International Journal of Thermophysics, 2013, 34, 1499-1503.	2.1	2
45	The Optical Absorption Coefficient of Maize Grains Investigated by Photoacoustic Spectroscopy. International Journal of Thermophysics, 2017, 38, 1.	2.1	2
46	Blood optical absorption of rats with hepatic damage and turmeric treatment: Methemoglobin analysis. Journal of Molecular Liquids, 2019, 291, 111310.	4.9	2
47	Optical properties of textile materials added with UV protective biomaterials. SN Applied Sciences, 2020, 2, 1.	2.9	2
48	Designing a horticultural intervention to improve food security: evaluation of mulching practices using sustainability indicators. Agroecology and Sustainable Food Systems, 2020, 44, 1212-1242.	1.9	2
49	Transdisciplinary Methodological Option for Initial Research Process: Training of Researchers. Transdisciplinary Journal of Engineering & Science, 0, 9, .	0.1	2
50	Study of Mineral-Based oils with Jatropha curcas L. as Bio-Additive Through Thermal and Kinematic Viscosity Properties. International Journal of Thermophysics, 2022, 43, 1.	2.1	2
51	Changes in masa and tortillas obtained from maize irradiated and nixtamalized with nejayote. International Agrophysics, 2018, 32, 387-394.	1.7	2
52	Induced changes of phenolic compounds in turmeric bread by UV-C radiation. Journal of Food Measurement and Characterization, 2022, 16, 1012-1028.	3.2	2
53	Caracterización colorimétrica, textura y calidad sanitaria de panes adicionados con maÃces criollos y Curcuma longa. Superficies Y Vacio, 0, 35, .	0.2	2
54	Obtaining thermal images of creole corn by means of photoacoustic microscopy. Journal of Applied Physics, 2022, 131, .	2.5	2

#	Article	IF	Citations
55	Analysis of Maize Seed Germs by Photoacoustic Microscopy and Photopyroelectric Technique. International Journal of Thermophysics, 2013, 34, 979-985.	2.1	1
56	Quantum mechanical model for the anticarcinogenic effect of extremely-low-frequency electromagnetic fields on early chemical hepatocarcinogenesis. Physical Review E, 2017, 95, 022416.	2.1	1
57	Thermal Imaging Using Photoacoustic Microscopy with Different Excitation Wavelengths. International Journal of Thermophysics, 2019, 40, 1.	2.1	1
58	Thermal analysis and artificial vision of laser irradiation on corn. SN Applied Sciences, 2020, 2, 1.	2.9	1
59	Optical absorption spectra of germinated seedlings from seeds exposed to vehicle polluting gases. SN Applied Sciences, 2020, 2, 1.	2.9	1
60	Statistical methods for the analysis of thermal images obtained from corn seeds. SN Applied Sciences, 2021, 3, 1.	2.9	1
61	Relationship of airports, population, competitiveness indexes and human development with confirmed and deceased cases by COVID-19: Need for transdisciplinary systemic decisions Transdisciplinary Journal of Engineering & Science, 0, 11, .	0.1	1
62	Fractal Analysis of the Solar Radiation in Mexico City. Applied Mechanics and Materials, 2009, 15, 117-120.	0.2	0
63	Thermal Images of Small Agricultural Seeds Obtained by Photoacoustic and Photopyroelectric Microscopies. International Journal of Thermophysics, 2013, 34, 972-978.	2.1	0
64	Thermal Images of Seeds Obtained at Different Depths by Photoacoustic Microscopy (PAM). International Journal of Thermophysics, 2015, 36, 812-818.	2.1	0
65	Note: Photopyroelectric measurement of thermal effusivity of transparent liquids by a method free of fitting procedures. Review of Scientific Instruments, 2016, 87, 026105.	1.3	0
66	Thermal Effusivity of Human Fluids. International Journal of Thermophysics, 2019, 40, 1.	2.1	0
67	Métodos biofÃsicos y la ingenierÃa: perspectiva sistémica transdisciplinaria. Ingeniare, 2013, 21, 311-313.	0.3	0
68	Preferencias del consumidor de productos alimenticios locales. , 0, , .		0
69	Campo electromagnético en plántulas, rendimiento y calidad de maÃz en condiciones de campo. Revista Mexicana De Ciencias Agricolas, 2019, 10, 629-642.	0.2	0