Xiaoyu Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2850784/publications.pdf Version: 2024-02-01

Χιλογμ Ζηλης

#	Article	IF	CITATIONS
1	Protein Lipidation: Occurrence, Mechanisms, Biological Functions, and Enabling Technologies. Chemical Reviews, 2018, 118, 919-988.	23.0	312
2	Electrophilic PROTACs that degrade nuclear proteins by engaging DCAF16. Nature Chemical Biology, 2019, 15, 737-746.	3.9	282
3	An Activity-Guided Map of Electrophile-Cysteine Interactions in Primary Human T Cells. Cell, 2020, 182, 1009-1026.e29.	13.5	194
4	HDAC11 regulates type I interferon signaling through defatty-acylation of SHMT2. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5487-5492.	3.3	121
5	Loss of Sirtuin 1 Alters the Secretome of Breast Cancer Cells by Impairing Lysosomal Integrity. Developmental Cell, 2019, 49, 393-408.e7.	3.1	102
6	DCAF11 Supports Targeted Protein Degradation by Electrophilic Proteolysis-Targeting Chimeras. Journal of the American Chemical Society, 2021, 143, 5141-5149.	6.6	86
7	Identifying the functional contribution of the defatty-acylase activity of SIRT6. Nature Chemical Biology, 2016, 12, 614-620.	3.9	79
8	Thiomyristoyl peptides as cell-permeable Sirt6 inhibitors. Organic and Biomolecular Chemistry, 2014, 12, 7498-7502.	1.5	70
9	SIRT2 and lysine fatty acylation regulate the transforming activity of K-Ras4a. ELife, 2017, 6, .	2.8	70
10	SIRT2 Reverses 4-Oxononanoyl Lysine Modification on Histones. Journal of the American Chemical Society, 2016, 138, 12304-12307.	6.6	65
11	SIRT6 regulates Ras-related protein R-Ras2 by lysine defatty-acylation. ELife, 2017, 6, .	2.8	62
12	NMT1 and NMT2 are lysine myristoyltransferases regulating the ARF6 GTPase cycle. Nature Communications, 2020, 11, 1067.	5.8	62
13	SIRT7 Is Activated by DNA and Deacetylates Histone H3 in the Chromatin Context. ACS Chemical Biology, 2016, 11, 742-747.	1.6	57
14	Chemical Inhibition of ENL/AF9 YEATS Domains in Acute Leukemia. ACS Central Science, 2021, 7, 815-830.	5.3	46
15	Direct Comparison of SIRT2 Inhibitors: Potency, Specificity, Activityâ€Dependent Inhibition, and Onâ€Target Anticancer Activities. ChemMedChem, 2018, 13, 1890-1894.	1.6	38
16	A Smallâ€Molecule SIRT2 Inhibitor That Promotes Kâ€Ras4a Lysine Fattyâ€Acylation. ChemMedChem, 2019, 14, 744-748.	1.6	36
17	Terpenoids from Tripterygium wilfordii. Phytochemistry, 2011, 72, 1482-1487.	1.4	35
18	Lysine fatty acylation promotes lysosomal targeting of TNF-α. Scientific Reports, 2016, 6, 24371.	1.6	30

XIAOYU ZHANG

#	Article	IF	CITATIONS
19	Comparative Nucleotide-Dependent Interactome Analysis Reveals Shared and Differential Properties of KRas4a and KRas4b. ACS Central Science, 2018, 4, 71-80.	5.3	25
20	SIRT2 and Lysine Fatty Acylation Regulate the Activity of RalB and Cell Migration. ACS Chemical Biology, 2019, 14, 2014-2023.	1.6	25
21	Expanding the landscape of E3 ligases for targeted protein degradation. Current Research in Chemical Biology, 2022, 2, 100020.	1.4	23
22	Characterization of chemopreventive agents from the dichloromethane extract of Eurycorymbus cavaleriei by liquid chromatography–ion trap mass spectrometry. Journal of Chromatography A, 2009, 1216, 4859-4867.	1.8	22
23	PYDDT, a novel phase 2 enzymes inducer, activates Keap1–Nrf2 pathway via depleting the cellular level of glutathione. Toxicology Letters, 2010, 199, 93-101.	0.4	19
24	Characterization of Aromatase Binding Agents from the Dichloromethane Extract of Corydalis yanhusuo Using Ultrafiltration and Liquid Chromatography Tandem Mass Spectrometry. Molecules, 2010, 15, 3556-3566.	1.7	16
25	Characterization of bioactive thiophenes from the dichloromethane extract of Echinops grijisii as Michael addition acceptors. Analytical and Bioanalytical Chemistry, 2010, 397, 1975-1984.	1.9	13
26	2-(Penta-1,3-diynyl)-5-(3,4-dihydroxybut-1-ynyl)thiophene, a Novel NQO1 Inducing Agent from Echinops grijsii Hance. Molecules, 2010, 15, 5273-5281.	1.7	11
27	A secoiridoid with quinone reductase inducing activity from Cortex fraxini. Fìtoterapìâ, 2010, 81, 834-837.	1.1	10
28	A Chemical Proteomic Probe for the Mitochondrial Pyruvate Carrier Complex. Angewandte Chemie - International Edition, 2020, 59, 3896-3899.	7.2	10
29	SPIN4 Is a Principal Endogenous Substrate of the E3 Ubiquitin Ligase DCAF16. Biochemistry, 2021, 60, 637-642.	1.2	7
30	Three lignans and one coumarinolignoid with quinone reductase activity from Eurycorymbus cavaleriei. Fìtoterapìâ, 2009, 80, 320-326.	1.1	6
31	Seven new benzeneacetic acid derivatives and their quinone reductase activity from Eurycorymbus cavaleriei. Phytochemistry Letters, 2009, 2, 152-158.	0.6	6
32	High-Throughput Enzyme Assay for Screening Inhibitors of the ZDHHC3/7/20 Acyltransferases. ACS Chemical Biology, 2021, 16, 1318-1324.	1.6	6
33	A deuterium-labelling mass spectrometry–tandem diode-array detector screening method for rapid discovery of naturally occurring electrophiles. Analytical and Bioanalytical Chemistry, 2011, 400, 3463-3471.	1.9	5
34	HPLC-Based Enzyme Assays for Sirtuins. Methods in Molecular Biology, 2018, 1813, 225-234.	0.4	4
35	A Proteomic Approach Identifies Isoform-Specific and Nucleotide-Dependent RAS Interactions. Molecular and Cellular Proteomics, 2022, 21, 100268.	2.5	4
36	Improving the NQO1â€Inducing Activities of Phenolic Acids from Radix <i>Salvia miltiorrhiza</i> : a Methylation Strategy. Chemical Biology and Drug Design, 2011, 78, 558-566.	1.5	3

#	Article	IF	CITATIONS
37	Chemical Proteomics for Expanding the Druggability of Human Disease. ChemBioChem, 2020, 21, 3319-3320.	1.3	3
38	A new fluorescein isothiocyanate-based screening method for the rapid discovery of electrophilic compounds. Analytical Methods, 2010, 2, 1472.	1.3	2
39	A Chemical Proteomic Probe for the Mitochondrial Pyruvate Carrier Complex. Angewandte Chemie, 2020, 132, 3924-3927.	1.6	0