Swapnil Gaikwad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2850641/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi. Materials Letters, 2014, 115, 13-17.	2.6	316
2	Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3. International Journal of Nanomedicine, 2013, 8, 4303.	6.7	215
3	Antimicrobial peptides as natural bio-preservative to enhance the shelf-life of food. Journal of Food Science and Technology, 2016, 53, 3381-3394.	2.8	130
4	Green synthesis of silver nanoparticles by Phoma glomerata. Micron, 2014, 59, 52-59.	2.2	126
5	Biofabrication of Silver Nanoparticles by Opuntia ficus-indica: In vitro Antibacterial Activity and Study of the Mechanism Involved in the Synthesis. Current Nanoscience, 2010, 6, 370-375.	1.2	99
6	A New Report on Mycosynthesis of Silver Nanoparticles by Fusarium culmorum. Current Nanoscience, 2010, 6, 376-380.	1.2	77
7	Strategic role of nanotechnology for production of bioethanol and biodiesel. Nanotechnology Reviews, 2016, 5, .	5.8	75
8	Curcumin nanoparticles: physico-chemical fabrication and its in vitro efficacy against human pathogens. 3 Biotech, 2015, 5, 991-997.	2.2	64
9	Potential applications of curcumin and curcumin nanoparticles: from traditional therapeutics to modern nanomedicine. Nanotechnology Reviews, 2015, 4, 161-172.	5.8	60
10	Biosynthesized silver nanoparticles performing as biogenic SERS-nanotags for investigation of C26 colon carcinoma cells. Colloids and Surfaces B: Biointerfaces, 2015, 133, 296-303.	5.0	47
11	Biosynthesis of zinc oxide nanoparticles by petals extract of <i>Rosa indica</i> L., its formulation as nail paint and evaluation of antifungal activity against fungi causing onychomycosis. IET Nanobiotechnology, 2017, 11, 205-211.	3.8	45
12	<i>Lawsonia inermisâ€</i> mediated synthesis of silver nanoparticles: activity against human pathogenic fungi and bacteria with special reference to formulation of an antimicrobial nanogel. IET Nanobiotechnology, 2014, 8, 172-178.	3.8	44
13	Mycosynthesis of Silver Nanoparticles Using Lingzhi or Reishi Medicinal Mushroom, Ganoderma lucidum (W. Curt.:Fr.) P. Karst. and their Role as Antimicrobials and Antibiotic Activity Enhancers. International Journal of Medicinal Mushrooms, 2011, 13, 483-491.	1.5	42
14	Optimization of process parameters for the synthesis of silver nanoparticles from Piper betle leaf aqueous extract, and evaluation of their antiphytofungal activity. Environmental Science and Pollution Research, 2020, 27, 27221-27233.	5.3	40
15	Microbial community structure of two freshwater sponges using Illumina MiSeq sequencing revealed high microbial diversity. AMB Express, 2016, 6, 40.	3.0	34
16	From biotechnology principles to functional and low-cost metallic bionanocatalysts. Biotechnology Advances, 2019, 37, 154-176.	11.7	34
17	Catharanthus roseus leaf extract-synthesized chitosan nanoparticles for controlled in vitro release of chloramphenicol and ketoconazole. Colloid and Polymer Science, 2015, 293, 1465-1473.	2.1	31
18	Screening of different species of <i>Phoma</i> for the synthesis of silver nanoparticles. Biotechnology and Applied Biochemistry, 2013, 60, 482-493.	3.1	30

SWAPNIL GAIKWAD

#	Article	IF	CITATIONS
19	<i>Myxobacteria</i> â€mediated synthesis of silver nanoparticles and their impregnation in wrapping paper used for enhancing shelf life of apples. IET Nanobiotechnology, 2016, 10, 389-394.	3.8	27
20	Immobilized Nanoparticles-Mediated Enzymatic Hydrolysis of Cellulose for Clean Sugar Production: A Novel Approach. Current Nanoscience, 2019, 15, 296-303.	1.2	24
21	Biomedical applications of nanobiosensors: the state-of-the-art. Journal of the Brazilian Chemical Society, 2012, , .	0.6	22
22	Bioconjugation of Gold and Silver Nanoparticles Synthesized by <l>Fusarium oxysporum</l> and Their Use in Rapid Identification of <l>Candida</l> Species by Using Bioconjugate-Nano-Polymerase Chain Reaction. Journal of Biomedical Nanotechnology, 2013, 9, 1962-1971.	1.1	22
23	The role of nanotechnology in control of human diseases: perspectives in ocular surface diseases. Critical Reviews in Biotechnology, 2016, 36, 777-787.	9.0	17
24	Screening of Yeasts for Selection of Potential Strains and Their Utilization for In Situ Microbial Detoxification (ISMD) of Sugarcane Bagasse Hemicellulosic Hydrolysate. Indian Journal of Microbiology, 2016, 56, 172-181.	2.7	13
25	Gold nanoparticles: novel catalyst for the preparation of direct methanol fuel cell. IET Nanobiotechnology, 2015, 9, 66-70.	3.8	10
26	Phycofabrication Of Silver Nanoparticles And Their Antibacterial Activity Against Human Pathogens. Advanced Materials Letters, 2016, 7, 1010-1014.	0.6	9
27	Current Advances in the Antimicrobial Potential of Species of Genus Ganoderma (Higher) Tj ETQq1 1 0.784314 r Medicinal Mushrooms, 2015, 17, 921-932.	gBT /Overl 1.5	ock 10 Tf 50 8
28	Biogenic fabrication of CuNPs, Cu bioconjugates and <i>in vitro</i> assessment of antimicrobial and antioxidant activity. IET Nanobiotechnology, 2017, 11, 568-575.	3.8	6
29	Phytofabrication of silver nanoparticles by using aquatic plant Hydrilla verticillata. Nusantara Bioscience, 2016, 4, .	0.6	5
30	Potential applications of curcumin and curcumin nanoparticles: from traditional therapeutics to modern nanomedicine. Nanotechnology Reviews, 2015, .	5.8	2
31	Industrial Applications of Nanomaterials Produced from <i>Aspergillus</i> Species. , 0, , .		2
32	Potency of Silver Nanoparticles (SNPs) as UV protectant for HaNPV. Journal of Biological Control, 2015, 29, 94.	0.2	0
33	Fungi: Myconanofactory, Mycoremediation and Medicine. , 2018, , 201-219.		0